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The lateral shear interferometer is analyzed using two-exposure recording 

of lens Gabor hologram of the imaginary image of an amplitude light 
scatterer. It is shown, that the interference pattern formed in the course of 
spatial filtering of a diffraction field determines the axial aberration of a lens 
with double sensitivity. 

 

As it was shown in Ref. 1, at the stage of 
reconstructing the hologram of an imaginary image of a 
mat screen illuminated with an aberration-free 
diverging wave, two-exposure off-axis recording of the 
hologram using positive lens leads to formation in (–1) 
diffraction order of lateral shear interferograms in the 
bands of infinite width. Therewith, the interference 
pattern, which characterizes wave aberrations of a lens, 
localizes in the image plane of a mat screen and spatial 
filtering of the diffraction field in the hologram plane 
is required to record that pattern. In addition to the 
object channel, phase distortion in the off-axis 
reference wave  channel appearing due to optical 
aberrations and forming quasi-plane wave front occurs, 
as well. The interference pattern, characterizing these 
distortions, localizes in the hologram plane. The 
pattern can be recorded in the course of spatial filtering 
of the diffraction field on the optical axis in the image 
plane of a mat screen. 

In this paper, we analyze peculiarities of the 
lateral shear interferogram formation in diffusely 
scattered fields at two-exposure recording of a 
hologram using Gabor scheme in comparison with the 
case when the off-axis reference wave is used. 

 

 
FIG. 1. Optical arrangement of recording (a) and 
reconstructing (b) of double-exposure Gabor 
hologram: 1, 2, 3 are amplitude light scatterer, 
photoplate-hologram, and the plane of the hologram 
recording, respectively, L0, L1, L2  are lenses, p0, p2 
are filtering apertures, p1 is the objective aperture. 
 

As is seen from Fig. 1a, the amplitude light screen 
located in the plane (x1, y1) is illuminated with a 
coherent aberration-free radiation of diverging 
spherical wave with the  radius of curvature R formed 

by lens L0 and point aperture in an opaque screen p0, 
located at the lens focus. Then, diffusely scattered 
radiation passes through a controllable lens L1 with the 
focal length f1 and the hologram recording is made an a 
photoplate 2 during the first exposure. Before the 
second exposure, the screen is moved in its plane, for 
example, along the axes x at a distance a, while the 
photoplate is moved in the same direction at a distance 
b = af1/(f1 – l1), where l1 is a distance between the 
screen and the principal plane (x2, y2) of the lens L1. 

If condition f1 > l1 l2/(l1 + l2) (where l2 is a 
distance between the principal plane and the 
photoplate) holds, in the Fresnel approximation 
without considering constant factors and based on 
Ref. 1 complex amplitudes of the fields of  the first 
and second exposures in the plane (x3, y3) of the 
photoplate take the following form: 
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where ⊗ designates convolution, k is the wave 
number, δ(x3, y3) is Dirac delta-function, 
 

1/L = 1/l1 – 1/f1 + 1/l2 ,  
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=  ⌡⌠ 
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is the Fourier transform of a diffuse screen which 
absorption amplitude t(x1, y1) is a random function 
of position,  
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⌡⌠ 

 

  
–∞

    

∞

p1(x2, y2) exp i ϕ(x2, y2) × 

× exp [– ik (x2 x3 + y2 y3) / l2] dx2 dy2  

is the Fourier transform of a generalized function 
ð1(õ2, ó2) åõð iϕ(õ2, ó2) of the controllable lens pupil 
(see Ref. 2), with the account for its axial wave 
aberrations. 

If a photolayer exposed with a light of intensity 
I(x3, y3) = u1(x3, y3) u*

1(x3, y3) + u2(x3, y3) u*
2(x3, y3), is 

developed so that the negative is made within linear 
segment of the characteristic curve of its blackening 

and diffusely scattered component of the hologram 
transmittance,  presented in Fig. 1,b, with the 
account for condition t(õ1, ó1) << 1 is defined by the 
following expression:  
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to reduce size of expressions. 
Let us assume that spatial filtering of the 

diffraction field is made at the optical axis of the 
lens L2 with the focal length f2 using the objective 
pupil aperture p2 (see Fig. 1,b). In this case, 
according to Ref. 3, distribution of the field complex 
amplitude in the second focal plane of the lens can be 
written in the following form: 
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where Ð2(õ4, ó4) is the Fourier transform of the 
transmission function of the objective aperture. 

Substitution of Eq. (3) into Eq. (4) gives 
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where μ1 = l1 l2/Lf2, μ2 = l2/f2 are  the coefficients 
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Equation (5) describes complex amplitude of the 
light which produces in the Fourier plane illuminance 
characteristic of the subjective speckle-structure. The 
size of individual speckle in this plane is defined by the 
width of the function Ð2(õ4, ó4). Therewith, as can be 
seen from Eq. 5, if the diameter of illuminated area of 
the amplitude light reflecting screen is no less than 

d1 ⎝
⎛

⎠
⎞1 + 

l1
l2
 – 

l1
f1

 where d1 is the pupil diameter of the 

lens L1 (see Fig. 1,a), the light field in the observation 
plane for both (–1) and (+1) orders of diffraction is 
defined as a superposition of two superimposed 
identical, within the region of their overlap, functions 
of the pupils of the speckle-fields for two exposures. 
Besides, when providing maximum values of the 
correlation functions, Eq. (5) for even phase function 
ϕ(õ2, ó2), corresponding to the axial wave aberrations 
of a controllable lens, takes the following form: 
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where 
ξf1
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 are the 

spatial frequencies, λ is the wavelength of the 
coherent light, used for the hologram recording and 

reconstruction, 
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Since the change of sign of variables in the 
second integral in Eq. (6) is compensated for by the 
change of limits of an integral, distribution of the 
complex field amplitude in the Fourier-plane the lens 
L2 (see Fig. 1b) is defined by the following 
expression: 
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function. 
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order longer than the size of a subjective speckle, this 
function can be factored out from the sign of the 
convolution integral (see Ref. 4). In this case, the 
illuminance distribution in the plane (x4, y4) takes 
the following form: 
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Equation (8) describes the speckle-structure  
modulated by interference fringes, which represent 
the lateral shear interferogram in fringes of infinite 
width. The latter describe the axial wave aberrations 
of a lens under control L1 (see Fig. 1a). Besides, this 
low-frequency interference pattern, in its turn, 
modulates, as known from Ref. 5, high-frequency one 
which represents a system of Young interference rings 
due to interference of the waves in (–1) and (+1) 
diffraction orders. If the value of 

D = λ(f1 – l1)Lf
2

2/f1 l1 l2
  is much less than the 

period of the function [äϕ (μ2õ4, μ2ó4)/äμ2õ4]2c, the 
illuminance distribution in the observation plane (see 
Fig. 1a) is described by the following expression: 

I(x4, y4) ~ 
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As it follows from Eq. (9), the lateral shear 
interferogram, describing the axial wave aberrations 
of a lens L1, (see Fig. 1a) provides a two times 
higher sensitivity as compare to double-exposure 
hologram recording using the Leight-Upatnieks 
scheme (see Ref. 10). This is due to superposition of 
quasi-spherical waves, propagated in the same 
direction along the optical axis and diffracted in (–1) 
and (+1) diffraction orders. Moreover, based on 
Eq. (5), two out of four waves added in the 
observation plane 3 (see Fig. 1b) are reversed with 
respect to other two waves and their wave fronts are 
rotated by 180° around the optical axis. 

In addition to the general case of a Gabor 
hologram recording at l1 > 0, let us consider special 
case when the lens L1 is placed in the plane of the 
amplitude screen. If l1 =0, the previous analysis is 
valid and, as indicated in Fig. 1b, the lateral shear 
interferogram describing the axial wave aberrations 
of a lens with the double sensitivity at a fixed shear 
value is formed at the stage of the hologram 
reconstruction. Moreover, the same result is achieved 
when collimating system of positive lenses L2 and L3 
transfers the image from the plane (x3, y3) into the 
plane (x4, y4) (see Fig. 2). 

 

 
 

FIG. 2. Optical arrangement of recording of the 
interference pattern, localized in the hologram plane. 

 
In the case of l1 = 0 the field distribution in 

the photoplate plane (x3, y3) for two exposures  
(see Fig. 1a) can be expressed as an integral over 
independent parameters of plane waves, which are 
their amplitude, phase and direction of propagation 
(see Ref. 6). Then, in the region of dispersion of 
the spatial frequency corresponding to the Fresnel 
diffraction zone the hologram transmittance 
component due to diffuse scattering within the area 
of the exposure fields overlapping can be defined 
from the following expression: 
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If the spatial filtering of the diffraction field is 
made at the optical axis using objective aperture p3 of 
the lens L3 with the focal length f3 (see Fig. 2) and 
in the case when the field is unlimited in space by 
the lens L2, one can show, using Ref. 7, that the 
complex field amplitude distribution in the 
observation plane takes the form 

u(x4, y4) ~ τ′(–μ3x4, –μ3y4) ⊗ P3(x4, y4) ,  (11) 

where P3(x4, y4) is the Fourier transform of the 
transmission function of the objective aperture of the 
lens L3 (see Ref. 3); μ3 = f2/f3 is the coefficient of  
the scale transformation. 

By substituting Eq. (10) into Eq. (11) and in 
view of the validity of equality  
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(which can be proved by writing the convolution in 
the integral form and assuming the even phase 
function, describing the axial wave aberrations of the 
lens, to be a slow changing function coordinates), 
one can obtain the following expression: 
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Hence, on the basis of an earlier used condition 
implying, that if a subjective speckle defined by the 
width of the function P3(x4, y4) is small as compared 
to the speckle-field phase modulation period, the 
illuminance distribution in the plane (x4, y4) can be 
expressed in the following form: 
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Equation (13) represents the lateral shear 
interferogram in the bands of infinite width, which 
modulates the subjective speckle-structure. Moreover, 
the interference pattern, localized in the hologram 
plane, describes the axial wave aberrations of the lens 
under control with doubled sensitivity at a fixed lateral 
shear. 

In our experiments, the double-exposure 
holograms were recorded on the photoplates of Micrat 
VRS type using radiation of a He–Ne laser at 
λ = 0.63 μm. The experimental procedure includes a 
comparison of double-exposure holograms, recorded 
using Gabor and Leight-Upatnieks methods. 

As an example, the lateral shear interferogram 
recorded at the stage of the hologram reconstruction in 
the course of spatial filtering of the diffraction field in 
the hologram plane at the optical axes in (–1) 
diffraction order using a small-aperture laser beam 
(≈ 2 mm) (see Ref. 1) is shown in Fig. 3a. The 
interferogram localizes in the plane of imaginary image 
of a mat screen and describes spherical aberration with 
the afterfocal defocusing of the lens with focal length 
f1 = 120 mm and pupil diameter d1 = 30 mm under 
control. Double-exposure hologram recording was 
performed using an off-axis reference wave for 
l1 = 45 mm, l2 = 290 mm, a = 0.2 ± 0.002 mm, and 
b = 0.32 ± 0.002 mm. The lateral filtering of the 
diffraction field in the hologram plane out of the 
optical axis (x3 = 8 mm, y3=0) causes the formation of 
the lateral shear interferogram (see Fig. 3b), which also 
describes the off-axis wave aberration of the lens under 
control (see Ref. 1). 

 

 

 

a b 
FIG. 3. Interference patterns, localized in the image 
plane of a mat screen and recorded with the spatial 
filtering of diffraction field in the hologram plane at 
the optical axis (a) and out of the optical axis (b). 
 

Then, the amplitude diffuse screen was mounted 
instead of the mat screen, the channel forming the off-
axis reference wave was eliminated and before the 
second exposure of the photoplate double-exposure 
recording of the hologram was performed with the 
Gabor method for a = 0.2 ± 0.002 mm, and 
b = 0.32 ± 0.002 mm. If, similarly to Ref. 1, the first 
and third terms in Eq. (3), determining the wave 
diffraction in (+1) order are eliminated from the 
consideration, one can obtain the following. When 
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reconstructing the double-exposure Gabor hologram at 
the optical axis point using a small-aperture laser 
beam, the lateral shear interferogram, describing the 
wave aberrations of the lens, appears in the plane the 
imaginary image of the diffuse screen in (–1) 
diffraction order. But, if the spatial filtering is made in 
the region off of the optical axis, the interference 
pattern describes the off-axis wave aberration, as well. 
Thus, the results of the double-exposure Gabor 
hologram reconstruction at the point x3= 8 mm and 
y3 = 0 using a small-aperture laser beam are shown in 
Fig. 4a.  The unfocused twin of the imaginary image of 
the screen (real image) is in the right part of Fig. 4a, 
whereas a part of the interference pattern in the plane 
of the imaginary image of the diffuse screen, is the 
same as in Fig. 3b. When reconstructing the double-
exposure Gabor hologram at the point of the optical 
axis, unfocused real image fully superimposes the 
imaginary diffuse screen image and luminosity of the 
interference pattern of the kind presented in Fig. 1a 
reduces to zero. 

 

 

 

a b 
FIG. 4. Interference patterns, recorded in the course 
of double-exposure hologram reconstruction using 
spatial filtering of the diffraction field in the 
hologram plane in the region off of the optical axis 
(a) and at the optical axis in the near-diffraction 
zone (b). 
 

As shown in Fig. 1b, when a double-exposure 
Gabor hologram is reconstructed using the spatial 
filtering at the optical axis in the Fourier plane in the 
near diffraction band, the lateral shear interferogram, 
presented in Fig. 4b, forms. This interferogram 
demonstrates doubled sensitivity of the interferometer 
to the lens axial wave aberrations. The interference 
pattern, recorded with the spatial filtering at the 
optical axis in the hologram plane (see Ref. 1) when 
the mat screen and photoplate shears before the second 
exposure were a = 0.4 ± 0.002 mm and 
b = 0.64 ± 0.002 mm, respectively, are presented in 
Fig. 5. Within the experimental errors, this pattern is 
identical to that presented in Fig. 4b. 

 

 
 

FIG. 5. Interference pattern, localized in the image 
plane of a  mat screen. 

Note that for the interference pattern shown in 
Fig. 4b to be recorded, the double-exposure Gabor 
hologram should be placed at the first focal plane of 
the lens L2 (see Fig. 1b). Then, based on the phases 
of diverged and converged waves in the hologram 
plane (see Refs. 8, 9), the angular distribution of the 
waves in (–1) diffraction order scattered by the 
hologram fully overlaps in the Fourier plane with 
that in (+1) diffraction order. Deviation from this 
hologram position causes partial overlap of the 
spectra within a lower solid angle which determines 
the decrease in spatial extension of the interference 
pattern. Besides, a displacement of the center of 
filtering aperture p2 (see Fig. 1b) in the plane (x, y) 
leads to distortion of the interference pattern shown 
in Fig. 4b and affects its luminosity due to difference 
in propagation directions of the waves diffracted in 
(–1) and (+1) orders of diffraction. 

Similarly to Ref. 1, ignoring the first and third 
terms in Eq. (3), one can show, that for double-
exposure Gabor hologram phase distortion of the 
reference wave (is seen in Fig. 1a, this distortion is 
determined by axial wave aberrations of the lens L1) 
causes interference pattern to form in the hologram 
plane. For the pattern to be recorded spatial filtering 
of the diffraction field in (–1) diffraction order at 
the optical axis in the plane of the amplitude light 
diffuse screen image must be performed. However, 
luminosity of the interference pattern reduces to zero 
due to full superposition of the waves, diffracted in 
(+1) order. If we consider, that displacement of the 
filtering aperture in the plane of the amplitude 
diffuse screen image (x, y) causes, as in Ref. 1, 
distortion of the interference pattern in the hologram 
plane and decreases its contrast due to off-axis wave 
aberrations of the lens under control, it is obvious, 
that the pattern can not be recorded even with 
partial spatial separation of the waves in (–1) and 
(+1) diffraction orders, as it is made for spatial 
filtering of the diffraction field in the region off of 
the optical axis in the plane of the double-exposure 
Gabor lens hologram. 

For double-exposure hologram recording with a 
lens, placed in the plane of the diffuse screen a 
plane-convex lens with the focal length f1= 180 mm 
and pupil diameter d1 = 30 mm was used. The gap 
z = 0.3 mm between the lens and the screen satisfies 
the condition of “geometric shadow” z ≤ 0.2ρ2/λ (see 
Ref. 10), where ρ is the radius of correlation between 
the diffuse screen inhomogeneities. The photoplate 
was placed at the distance l2 = 370 mm.  

Figure 6a shows the lateral shear interferogram, 
describing spherical aberration in paraxial focus of 
the lens under control. The interferogram was 
recorded with the spatial filtering of the diffraction 
field at the optical axis in the plane of the hologram 
whose double-exposure recording was made using an 
off-axis reference wave (see Ref. 1) at lateral shear 
a = 1.5 ± 0.002 mm before second exposure. When 
performing the spatial filtering at the optical axis in 
the double-exposure Gabor hologram plane, the 



16   Atmos. Oceanic Opt.  /January  1997/  Vol. 10,  No. 1 V.G. Gusev 
 

distribution of the complex field amplitude in far 
diffraction zone for this hologram takes the following 
form: 

u(x4, y4) ∼ 

⎩⎪
⎨
⎪⎧
 

 

⎩⎪
⎨
⎪⎧

 

 

1 + exp i 
⎣
⎢
⎡

⎦
⎥
⎤ 

∂ϕ(μ2x4, μ2y4)

∂μ2
 x4

 a  

⎭⎪
⎬
⎪⎫
 

 

 × 

× 

⎩⎪
⎨
⎪⎧
 

 

t(μ2x4, μ2y4) exp –i 
⎣
⎢
⎡

⎦
⎥
⎤ϕ(μ2x4, μ2y4) + 

k
 

(x4

2

 + y4

2

)

2 l2
  + 

+ t(–μ2x4, –μ2y4) exp i ⎣
⎡

⎦
⎤ϕ(μ2x4, μ2y4) + 

k
 

(x4

2

 + y4

2

)
2 l2

  

⎭⎪
⎬
⎪⎫
 

 

⎭⎪
⎬
⎪⎫
 

 

 ⊗ 

⊗ P2(x4, y4) .  (14) 
 

 

 

a b 
FIG. 6. Lateral shear interferograms, recorded with 
spatial filtering of the diffraction field at the optical 
axis in the plane of double-exposure hologram 
according to Leight-Upatnieks (a) and Gabor (b) 
schemes. 
 

Superposition of the correlating speckle-fields for 
two exposures, in (–1) and (+1) diffraction orders, 
determines the illuminance distribution in the 
observation plane as 

I(x4, y4) ∼ 
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where the sign in second term depends on whether or 
not the function t(x1, y1) is even. 

Since the period of the function 

2ϕ (μ2õ4, μ2ó4) + 
k(x

2

4 + y
2

4)
l2

 is much shorter than that 

of the function a [∂ϕ(μ2x4,μ2y4)/∂μ2x4], the lateral 
shear interferogram, describes, as shown in Fig. 6b, 
the axial aberrations of the lens, appears in the 
observation plane in the bands of infinite width. 

But, according to Fig. 1b, reconstruction of the 
double-exposure hologram results in formation of the 
interference pattern, presented in Fig. 7a, while, as 
illustrated in Fig. 2, when reconstructing interference 
pattern, as shown in Fig. 7b, appears in the hologram 

plane. As in the previous case, this pattern describes 
the axial wave aberrations of the lens under control 
with doubled sensitivity at a fixed lateral shear 
a = 1.5 ± 0.002 mm. At the same time the luminosity 
of the interference pattern, presented in Fig. 7a, 
decrease with the lateral shear and it is universally 
lower than that of the pattern appeared in the 
hologram plane. This is due to diffraction of the 
background radiation from the corresponding non-
overlapped areas of the lens pupil for two exposures. 
As shown in Fig. 1b, this radiation appears at the 
stage of the Gabor hologram reconstruction. 
 

 

 

a b 
FIG. 7. Lateral shear interferogram in the far 
diffraction zone (a) and in the plane of a double-
exposure Gabor hologram (b). 
 

Thus, our experimental results indicate, that in 
the case of a double-exposure recording of the 
amplitude diffuse screen imaginary image using the 
Gabor scheme with a positive lens, correlation of the 
speckle-fields in (–1) and (+1) diffraction orders in 
the Fourier plane provides for the formation of the 
lateral shear interferogram in the bands of infinite 
width. That interferogram describes with a doubled 
sensitivity at a fixed shear wave aberrations of the 
lens. Besides, if the lens is placed in the diffuser 
plane, the double-exposure hologram recording 
provides for the localization of the interference 
pattern with double sensitivity, as well. This well 
agrees with Ref. 1, where it is shown, that the 
double-exposure recording of a mat screen imaginary 
image hologram using the off-axis reference wave 
causes the formation of the interference pattern in 
diffusely scattered fields, localized in the hologram 
plane and describes aberration of the reference wave. 
Hence, the physical reason for increase in the 
sensitivity of the lateral shear holographic 
interferometer presented is in the double passage of 
the reference and objective waves through the lens or 
objective under control, interference of waves in (–1) 
and (+1) diffraction orders and in the symmetry of 
the phase function, which describes the aberrations of 
the lens under control. 
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