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In this paper I’d like to discuss some problems arising when applying 
Dirichlet series to calculations of spectrally integrated radiation 
characteristics and give a review of the results obtained at the Institute of 
Atmospheric Optics SB of RAS, which give answers to many methodical and 
computational questions. 

 

1. INTRODUCTION INTO THE PROBLEM  

ON USING THE SERIES OF EXPONENTS  
AS A METHOD FOR ANALYZING THE 

ABSORPTION FUNCTIONS 
 

The specific features of the atmospheric 
spectroscopy are a great extent caused by the 
necessity of related calculating the absorption 
function Q of atmospheric gases.1,2 First of all, it is 
the integration over frequency ω of the “palisade” of 
a great number of spectral lines. The overlapping of 
the absorption bands of different gases makes 
additional troubles in calculations since the total 
absorption function Q is by no means a product of 
the absorption functions of the gaseous constituents, 
while they are just the values, which are measured 
experimentally. It is impossible to write Q for an 
inhomogeneous (relative to thermodynamic 
parameters) medium even if Q is available for any 
thermodynamically homogeneous case. Finally, it is 
often necessary to know the “source function”, i.e. a 
solution of the problem on light propagation in 
absorbing and emitting molecular atmosphere 
integrated over the spectrum. 

These problems become much more complicated 
in climate models because the program for calculating 
Q should be only a small part of the entire computer 
model. However, requirements to the calculation 
accuracy remain very high. 

Convincing illustration to the subject of the 
discussion is the radiation transfer equation for a 
aerosol-molecular medium. The molecular absorption, 
which is trivial in the problem of wave propagation 
arises all the above questions when calculating the 
values integrated over the spectrum. At the same 
time light scattering, which produces the main 
mathematical difficulties is independent of ω in a 
wide spectral interval. The situation seems to be very 
poor, since we shall have to iteratively solve the 
transfer equation changing in each iteration only the 
molecular absorption coefficient entering it as a 
parameter and then, in addition, to integrate over ω 
numerically.  

One of the popular approaches to resolve these 
problems is the use of series of exponents. The 
original idea was proposed by V.A. Ambartsumyan in 
1936 as early, and now there are some reviews, see, 
for example, Refs. 3–19 and the references therein.  

Let us illustrate the mathematical definitions 
using the transmission function, (which is equal  
1 – Q), as an example 
 

F(x) = 
1

Δω 
⌡⌠

ω′

ω′′
 

 

dω exp ($x κ(ω)) (1)  

 
for the ray path length x in a homogeneous medium  
with the molecular absorption coefficient κ(ω) in the 
spectral interval  Δω = ω′′ – ω′. A series of exponents 
that is used as a representation of Eq. (1) has the form 
 

F(x) = ∑ 
ν

bν exp ($sν x)  (2) 

 

with the abscissas sν and ordinates bν. 
The case with the transfer equation clearly 

explains the pragmatic importance of Eq. (2). As it 

follows from Ref. 20, now the integral intensity is ∑ 
ν

bν Iν, where Iν is the solution of the transfer 

equation, in which the “ordinary numbers” sν replace 

κ(ω). In so doing the transfer equation should be 
solved as many times as is the number of terms in the 
sum (2). 

It is obvious, that the efficiency of Eq. (2) is 
entirely regulated by a proper choice of bν and sν 
quantities. Let us briefly discuss some aspects 
essential to the history of the problem.  

The idea (2) has long been associated with the 
Laplace transform 

 

F(x) = 
⌡⌠

0

∞
 

 

ds f(s) exp ($sx) , (3) 
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since, the change of the integral for an appropriate 
quadrature formula for  f(s) would suit quite well. 
For example, of a Gaussian type, would minimize the 
number of terms in Eq. (2). The function f(s) is often 
taken as corresponding to F(x) for certain models of 
the absorption bands with a corrections to their 
parameters made in accordance with the experimental 
or calculated data using the theoretical κ(ω). Of 
course, one can find much grounds for criticizing 
such an approach. However, there is no denying that 
this way exhibits quite good pragmatic rationality.  

The idea seems to be very attractive to treat bν 

as the probability density (∑ 
ν

bν = 1 follows from 

Eqs. (1) and (2) at x = 0) of κ(ω) being equal to sν. 

In this case one may use (say, when considering the 
overlapping spectra) the formal rules of the 
probability theory. As a result it seems so that 
Eq. (3) may make a ground for such a position. 
Actually, it follows from Eqs. (2) and (5) that  

 

f(s) = 
1

2πi
 
⌡⌠

c $ i∞

c + i∞
 

 

dx exp (sx) 
1

Δω 
⌡⌠

ω′

ω′′
 

 

dω exp ($x κ(ω)) , 

c > 0 . (4) 
 
If to interchange the integrations in Eq. (4) the 

function f(s) = (Δω)$1  
⌡⌠

ω′

ω′′
 

 

δ(s $ κ(ω))dω appears. The 

δ – function, which appears here, leads to the 
distribution function for the value s according to the 
known scenarium of the probability theory. However 
by making use of the standard procedures of the 
mathematical analysis it is simple to establish that 
the interchange of the integrations in Eq. (4) is 
impossible and therefore the probabilistic 
interpretation of the ordinates in Eq. (2) remains 
only an arbitrary statement.  

The importance of the mathematical element (4) 
under discussion is even more wide. Actually, the last 
(and incorrect) version results in  

f = ∑ (Δω)$1 |κ′(∼ω(s))|$1 with the sum over the roots ∼ω
(s) of the equation κ(ω) = s. In fact, this same 
expression appears after the substitution of the 
integration variable s = κ(ω)  in Eq. (1). However, 
this action is forbidden because the extreme points, 
where κ′(ω) = 0, are inevitable by the very structure 
of κ(ω)  which is a sum of spectral lines. It is for this 
reason, the roundabout way of constructing f(s) 
appears to be necessary. 

There is no doubts that a procedure is needed for 
Eq. (2), which first, allows the values bν and  sν to 

be calculated immediately in terms of κ(ω), and, 
second, it should be invariant relative to all the 
above mentioned problems with the absorption 
function. 

Furthermore, in many papers devoted to Eq. (2) 
the “physical level of rigor” prevails though the 
present-day theory of the Dirichlet series21–23 (that is 
how mathematicians call the expansions like Eq. (2)) 
provides for a much more sophisticated 
“mathematical climate.” (As an example, the popular 
relationship between f and κ′(ω) should be 
mentioned, which is a consequence of mathematically 
incorrect use of Eq. (4)). 

We consider the latter circumstances as an 
evidence of the fact that the potential capabilities of 
the method “series of exponents” are not yet properly 
realized and the papers24–29 can be considered as an 
illustration of this statement. The discussion of such 
new elements makes the subject of this paper. 

 
2. THE METHOD OF CALCULATING THE 

COEFFICIENTS OF A SERIES OF EXPONENTS 
USING SPECTROSCOPIC DATABASES. 

 
The main idea of the method proposed can be 

most simply explained when considering the case of a 
homogeneous medium assuming Eq. (1) to be the 
initial value.  

First, the mathematical problem arising in 
Eq. (4) should be overcome to save the very 
constructive idea of the relation between Eqs. (2) 
and (3). This happens to be achieved by introducing 
the function 

 

g(s) = 
⌡⌠

0

s
 

 

f(s) ds = 
1

2πi
 
⌡⌠

c $ i∞

c + i∞
 

 

  
dx

x
 F(x) exp (sx) . (5) 

 
It is evident that Eqs.(3)–(5) lead to  
 

F(x) = 
⌡⌠

0

1
 

 

dg exp ($xs(g)) ,    s(g) ≡ g$1(g) . (6) 

 
When F in Eq.(5) is replaced by Eq. (1) the 
interchange of integrations is already possible and 
that allows the basic formula of the method to be 
derived 
 

g(s) = 
1

Δω 
⌡⌠

κ(ω) ≤ s; ω ∈ [ω′,ω′′]

 

 

dω . (7) 

 
The transition from Eq. (6) to Eq. (2) is made simply 
by applying the quadrature formulas 
 

F(x) = ∑ 
ν

bν exp ($xs (gν)). (8) 

 
As numerical estimates show it is sufficient to take 
no more than 5 or 6 terms in the series (8) when 
using the formulas of the Gauss or Chebyshev type 
(gν are their abscissas). 
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It is essential that bν in Eq. (8) are simply the 

numbers, i.e. the ordinates of formulas for numerical 
integration and the dependence on thermodynamical 
parameters of the medium is entirely presented by 
s(g). This circumstance is very significant when 
solving the above problems of atmospheric 
spectroscopy and this makes Eq. (8) favorably 
different than the equation following from Eq. (3) 

 

F(x) = ∑ 
ν

aν exp ($ x sν) . (9) 

 

In Eq. (9) the abscissas s  are simply the numbers as 

well, however, the physical values enter the ordinates 
gν. 

It seems to be interesting to consider some fine 
details of a comparison between Eqs. (8) and (9) are 
of some interest. It follows from the theory of the 
Dirichlet series that in Eq. (9) 

 

sν = λν ,    aν = 
⌡⌠

0

∞
 

 

L(s) f(s) ds

λ $ λν
 

1

L′(λν)
 .  

 

The integral function L(λ) with simple roots λν 
should appear in the expansion of the exponent 

 

exp ($λx) = ∑
 

 

ν

L(λ)
λ $ λν

 
1

L′(λν)
 exp ($xλν) . 

 

Of course, the intention to have the minimum 
number of terms in Eq. (2) dominates. As follows 
from the expression for =ν the function L(λ) should 

be among the polynomials orthogonal with the 
weight f(s) in order to provide this. Then Eq. (9) 
reduces to a formula of the Gaussian type. But, from 
the other hand, the expansion of the exponent should 
exist and it belongs to those the description of which 
begins with the words “If there exists such L(λ)  
that ... .” However, by no means these conditions 
should hold jointly. 

Meanwhile, such properties of s(g) as monotony, 
continuity and limitedness, which follow from 
Eq. (7), make it possible to use the Gaussian, 
Chebyshev and similar formulas ensuring the 
efficiency of Eq. (8). 

The issue is continued by one consequence more, 
 

aν = 
1

Δω 
⌡⌠

ω ∈ λν$1 ≤ κ(ω) ≤ λν+1

 
 

 

dω, 

 

of the theory of Dirichlet series. The structure of this 
expression is similar to that of Eq. (7). However, 
again the stumbling block appears, which is in the 
necessity to seek the function L(λ). Transition to 
Eq. (8) is mathematically rigorous way to eliminate 
this trouble. 

The properties of s(g) already discussed allow 
one to treat Eq. (6) as a transition to an “effective“ 
line, which replaces the “array” of spectral lines in 

κ(ω). In fact, there appears certain basis for 
arranging the attempts (see, for example, the analysis 
in Ref. 30) to solve similar problem using only 
purely physical arguments. The existence of an 
effective line seriously simplifies the calculation of 
some radiation quantities. 

Series of exponents enable one to see sufficiently 
fine features of the line periphery from the 
experimental data pertaining, referring in fact only, 
to the central part of a spectral line (what looks 
rather unexpectedly). It is shown in Ref. 3 that at 
some frequency shift δω the Lorentzian line shape 
changes for the exponential decay. As follows from 
Eq. (7) these regions are inessential for g(s) and, 
consequently, for the coefficients of the series (8). 
The quantity δω itself depends on temperature and 
this function can be easily retrieved by comparing the 
data calculated when varying δω with the 
experimental data on Q. The latter quantity is 
undoubtedly determined by the intervals 
corresponding to the central part of the line. 

Theory of the series (2) provides as well the 
mathematical grounds for calculating bν and 

kν ≡ s(gν) directly in terms of F(x). It can be shown 

that the function K(λ) = o (1 $ λ/kν) well suits for 

the role of L(λ) in the expansion of the exponent 
that leads to the system of equations 

 

1
Δω 

⌡⌠

ω′

ω′′
 

 

K(κ(ω)) dω
κ(ω) $ kν

 = bν K′(kν) 

 

for kν. The left-hand side can easily be written in 

terms of the “moments” (m = 1, 2 ...) 
 

w
m
 = 

1
Δω 

⌡⌠

ω′

ω′′
 

 

κ(m)(ω) dω = ($1)m 
дm F(x)

дxm
 , 

 

and the derivatives are calculated using the function 
F(x) after its analytical continuation. Pragmatic 
usefulness of such a procedure is in the fact that the 
climatic and geophysical applications require only the 
absorption function in the majority of cases and 
therefore it is more reliable to use the experimental 
data on this function. 

The basic relation (7) is useful when seeking 
coefficients of the F(x) expansion over orthogonal 

exponential functions D
m
 = ∑ 

m′

C
mm′

 exp ($x ζ
m′

), 

which is an efficient calculational method. Then, ζm 
are considered as parameters minimizing the error 
of representation of F in the form a sum of small 
number of terms. The orthogonality  

⌡⌠

0

∞
 

 

D
m
(x) D

m′
(x) dx = δ

mm′
 is a means to write q

mm′
 

in terms of ζm. 
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3. GENERALIZATIONS OF THE METHOD 
 
Applications of the above method of the 

representation of the absorption function as a series 
of exponents to solve the problems of the 
atmospheric spectroscopy  already mentioned are 
quite obvious. 

a) Inhomogeneous medium. In this case Eq. (1) 
is changed for the expression 

 

H = 
1

Δω 
⌡⌠

ω′

ω′′
 

 

dω exp ($ 
⌡⌠

(l)

 

 

dl′ κ(ω, l′)), 

where 
⌡⌠

(l)

 

 

dl′...  is a curvilinear integral over the ray 

path of the length l; κ is the function of l′ because of 
the dependence of the absorption coefficient on 
thermodynamic parameters of the spatially 
inhomogeneous atmosphere. 

To reduce H to the form (2) it is sufficient to 
replace τ by . τ, then use Eq. (7) and assume that 
õ = 1. Then 

 

H = ∑ 
ν

bν exp ($ s
∼
(gν, l) , 

 

g
∼
(s, l) = 

1
Δω ⌡⌠

τ(ω, l) ≤ s; ω ∈ [ω′,ω′′]

 
 dω ,           s

∼
(g, l) = g

∼$1(g, l)  

with bν defined as earlier. 
These rigorous expressions make the problem of 

calculational simplifications of m to be purely 
mathematical. The most natural simplification is 

 

H = ∑ 
ν

bν exp ($ 
⌡⌠

(l)

 

 

dl′ s(g, l′)) , 

 

when s(g, l′) is defined according to the procedure 
(7) for each l′ The latter relation was lively 
discussed, however, only on the heuristic level. 

As it appears now the widely spread technique of 
reduction to (1) (see Sect. 3a) well combines with 
the series of exponents, when the ray path passes 
through the inhomogeneous over height Z atmosphere 
(between Z1 and Z2) with the zenith angle θ. P(Z) 
and Θ(Z) are the pressure and temperature, 
respectively. This is achieved by introducing of 
approximation 

κ∼(ω, Z) = κ∼(ω, Z0) 
P(Z)

P(Z0)
 ⎝
⎛

⎠
⎞Θ(Z0)

Θ(Z)

α

 ≡ κ∼(ω, Z0) ξ(Z) 

 

and using a substitution of x in Eq.(1) by the value 

proportional to sec θ 
⌡⌠

z1

z2
 

 

ξ(Z) β(Z) dZ, where β(Z) is 

the partial pressure of the absorbing gas; α and Z0  

play the role of parameters, and κ = κ∼β. 
b) Overlapping of the absorption bands of 

different gases. Now the absorption coefficient is 

κ(ω) = ∑ 
n

κ
n
(ω) where the sum is taken over the gas 

mixture constituents. There are no principle problems 
here, it is quite sufficient to replace  by the sum 
that has just been written.  

Obviously, the calculational inconveniences are 
quite clear, namely, κ

n
 depends on the partial 

pressure of the corresponding gas and for each set of 
gases the calculation according to Eq.(7) with the 
present sum should be done again. It would be 
desirable if we could deal with s

n
(g), i.e., with the 

values (7) for a separate κ
n
. Then the approximation 

 

F(x) = ∑ 
ν

bν exp ($ x ∑ 
n

s
n
(gν) ) 

 
seems to be quite reasonable. By its mathematical 
content it is close to that considered in Sect. 3a and 
it is derived in a similar way. (It is true that its 
reliability is a little bit lower). Note in addition that 
in both cases the fact is essential that bν are simply 

the numbers. This circumstance underlines certain 
mathematical advantages of the variant (8). 

A more sophisticated variant is associated with 
the fact that, as in the case with a mixture of two 
gases, we sacrifice the monotony of the function (7) 
for the component with lower absorption (n = 2, for 
the sake of certainty). 

Let us introduce z(g) instead of s2(g) into the 
relation similar to Eq. (6) 

 

F
∼
(x1,x2) = 

⌡⌠

0

1
 

 

dg exp ($x1 s1(g) $ x2 z(g)) . 

 

Here .1,2 = β1,2 ., β1,2 are partial pressures of gases in 

the mixture (of course the change for to κ∼ is assumed 
to be done). As to z(g), the variation problem is 

formulated: the difference between F
∼
 and F is 

minimized in the sense of the least squares method 
under additional condition of transition to the 
rigorous variant at õ1 = 0. As it appears, the function 
z(g) takes its maximum value, and its position is a 
good parameter for fitting. 

c) Source function. The quantity called the 
source function is, by the definition, 

 

S = 
1

Δω 
⌡⌠

ω′

ω′′
 

 

dω B(ω) exp (x κ(ω)) 

 

with some quantity B.   Most often the derivative of 
the Planck function with respect to the temperature 
is considered as a source function and is used in the 
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problem on fluxes of the infrared radiation in the 
atmosphere. (Usually õκ → τ, as in Sect. 3a, and 
then the corresponding corrections are needed). In 
other version, it could be the instrumental function 
as for example in spectroscopic measurements. 

The exact expansion of S into a series over the 
exponents has the form (8) where s(gν) is replaced by 

 

s
u
(gν), su = g

u

$1
(g),  

 

g
u
(s) = 

1
Δω 

⌡⌠

ω′

ω′′
 

 

dω u(ω) h(ω) ,    h(ω) = 
⎩
⎨
⎧
 
l, κ(ω) ≤ s,
0, κ(ω) > s

 

 

u(ω) = B/B
∼
 ,    B

∼
 = (Δω)$1 

⌡⌠

ω′

ω′′
 

 

B(ω) dω , and in front 

of the sum (8) the quantity B
∼
 should be written.  

The  relation written for g
u
 can again be used 

when seeking purely calculational approximations. 
The variant g

u
 ≅ y(s)g(s) with the previous 

expression (7) and 
 

y(s) = 
1

s Δω 
⌡⌠

ω1(s)

ω2(s)
 

 

u(ω) dω ; 

 

ω1(s) = ω′ + (1/2) (1 $ s/s′) ,     
 

ω2 = ω′′ $ (1/2) (1 $ s/s′) . 
 

seems to be a reliable one. 
 

4. TRANSFER EQUATION  FOR QUANTITIES 
INTEGRATED OVER FREQUENCY IN THE 

AEROSOL-MOLECULAR MEDIUM 

 

Let I(p, r, ω) be the spectral intensity of a ray at 
the point r in the direction along the unit vector p.  
The transfer equation has the form 

 

p grad I = $ (σ(r) + κ(r, ω)) I(p, r, ω) +  

+ 
⌡⌠

 

 

dp′(r, p, p′) I(r, p′, ω) + η(ω, r) . (10) 

 

In Eq.(10) ϕ is the scattering phase function, σ and η 
are the coefficients of the aerosol attenuation and 
total emission; η = η(1) + η(2), where the components 
refer to the aerosol and to molecules, respectively.   

The quantity 
 

A(r, p) = 
1

Δω 
⌡⌠

ω′

ω′′
 

 

I(r, p, ω) dω , (11) 

is necessary and the aerosol parameters ϕ, σ, and η(1) 
can be considered constant within the interval Δω. 

An ingenious way of simplifying the problem 
(10) and (11) is suggested in Ref. 20. The series of 
exponents play there the role though not the primary 
but very essential. However, this solution is valid 
only for a homogeneous medium without the emission 
and necessary generalizations lean upon new elements 
discussed in this paper. 

As it appears, one cannot do without small 
approximations. The first of them is the inequality 

 
1
σ2 grad κ(r, ω) << 1 , 

 
which is almost unquestionable in many applications 
of the atmospheric optics. The second one is in 
practically inevitable use of approximations with 
s(g, l) in the form of a series of exponents for an 
inhomogeneous molecular medium. 

For Eq. (10) I = I(0) + I′; I(0) is the solution of 
the homogeneous problem (η = 0 in Eq.(10)) with the 
boundary condition standard for the transfer problem 
and associated with the light coming from outside 
through the surface of a volume occupied by the 
medium; I′ is a partial solution of the inhomogeneous 
equation with the “free” term η and with the zero 
boundary condition associated with the natural 
radiation of the medium. The quantity (11) finally 

takes the form ` = ∑ 
ν

bν Aν with the ordinates of 

quadrature formulas bν, the same as in all previous 

expressions. In accordance with the structure of the 

intensity `ν = A
ν

(0)+ A
ν
′ . Let us write the results of 

calculations of terms in the last relations. 

The quantity A
ν

(0) is the solution of equation 

(10) with the boundary condition η = 0, and, what is 
most important, with the molecular absorption 
coefficient κ selective over frequency replaced by the 
number s(gν, r) calculated following Sect. 3a, with r 
as a parameter. 

Moreover, there appears a possibility of removing 
the second of the above-mentioned approximations 
(true, in a heuristic way) using the substitution of 

s(g, r)  for p grad s∼(g, r), where s∼ is the exact variant 

from Sec. 3, (a) for τ = ⌡⌠
0

∞

 
 (ω,r $ p R) dR. Similar 

action is also possible when constructing the solution of 
the inhomogeneous equation. 

Then we have that, A
ν
′ = A

ν
(1)+ A

ν
(2) in accordance 

with the earlier noted splitting of the radiation 
coefficient. The first term is the partial solution of 
Eq. (10), in which η →  Ω(r)  q, κ → γ(gν, r), 

Ω = (Δω)$1

⌡⌠

ω′

ω′′
 

 

B dω with the Planck function B, q is the 

aerosol absorption coefficient, γ denotes the function 
s
u
  from Sect. 3c at a certain r. When calculating the 
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second term, the quantity Ωγ naturally appears instead 
of η (the other substitutions have already been 
described). However, the necessity is not excluded to 
replace Â by b ρ, where the factor ρ describes the 
violation of the local thermodynamic equilibrium (for 
example, in the upper layers of the atmosphere or in 
the very far wings of the absorption bands31). 
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