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A mathematical model is described of atmospheric hydrothermodynamics 
in the quasistatic approximation with a free upper boundary of air masses for 
a bounded region.  The coordinates affixed to the Earth’s surface relief are 
used.  Discrete approximations and algorithm implement the variational 
principle and the splitting method.  Some examples are given of modeling of 
mesoclimate of an industrial region under the joint effect of the relief and 
urban heat island. 

 
1. INTRODUCTION 

 

A problem on the formation of atmospheric 
circulation with a free upper boundary of air masses 
above the Earth’s surface with inhomogeneous 
orography and temperature is considered.  The height 
of the upper boundary of air masses varies with time 
and is the sought–after parameter. To construct the 
numerical model, we introduce the coordinates 
affixed to the Earth’s surface relief (so-called σ-
coordinates) with the vertical coordinate 
 

σ = (z $ δ(x, y))/h(x, y, t), (1) 
 

where the function δ(., 3) describes the surface 
relief, h(., 3, t) = m(., 3, t) $ δ(., 3), m(., 3, t) is 
the height of the upper boundary of air mass, t is 
time, x and y are the horizontal coordinates, x is 
directed eastward, and y is directed to the north. 

This class of problems arises in the study of 
climatic changes of industrial regions under the 
impact of anthropogenic changes of the parameters of 
large surface areas of the Earth.  In this case, the 
dynamics of mesoclimate formation is examined 
considering the interaction of the urban heat island 
with the background heat flux.  This is necessary for 
estimation of the level of atmospheric pollution under 
specific conditions of urban circulation, when the 
heat island, inhomogeneous relief, and other factors 
of the Earth’s surface act simultaneously.  The model 
with the free upper boundary in the Cartesian 
coordinates was considered in Ref. 1.  The main point 
of its implementation scheme was the use of the 
border method to construct the equation for the 
upper boundary. 

Here, the problem to be solved is formulated in 
an analogous way.  To solve this problem, explicit – 
implicit noniterative algorithm2 is used at a joining 
stage.  This algorithm is very convenient and 
efficient. 

By virtue of energy balanced discrete analogs of 
the model, the stability of calculations is provided 

irrespectively of the temperature stratification.  The 
model is constructed for a local region.  For 
convenient presentation, we do not decompose the 
state function into the background ones and their 
deviations in accordance with scales of the processes  
in the explicit form.  The background atmospheric 
conditions are considered only when we formulate the 
initial conditions and close the algorithm on the 
upper boundary and side boundaries of the domain of 
model definition. 
 

2. PROBLEM FORMULATION 

 
The basic equations of hydrothermodynamics in 

the selected coordinate system are written as 
 

1
h
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⎞ ∂ρhu
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 ∂p
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Fφ = 
∂
∂σ ⎝

⎛
⎠
⎞

χφ 
 ∂φ

 ∂σ  + divs ρμs grads φ; 

 
s = (x, y); φ = (u, v, T); A = 1 $ γa R/g. 
 
Here u, v, and w are the components of the wind 
velocity vector along the x, y, and  axes, 
respectively; u = (,, v, ω); T is the temperature; p is 
the pressure; ρ is the density; g is the acceleration 
due to gravity; l is the Coriolis parameter; μs is the 
horizontal turbulence exchange coefficient; 
χφ = ν + μ⏐grads σ⏐2; ν is the vertical turbulence 
exchange coefficient; R is the universal gas constant; 
γ= is the dry-adiabatic gradient; and ω is the analog 
of the vertical velocity related with w (the vertical 
wind velocity in the Cartesian coordinates) by  
Eq. (7). 

To calculate the function ω, we use the 
continuity equation (6) integrated over the vertical 
coordinate with boundary conditions for ω = 0 at 
σ = 0 and  σ = 1: 
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1
ρh 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞∂h

∂t ⌡⌠

0

σ

 
 
 
ρdσ + ⌡⌠

0

σ

 
 
 ⎝
⎛

⎠
⎞ ∂ρhu

∂x  + 
 ∂ρhv

∂y  dσ  . (8) 

 
At σ = 1, we obtain the equation for h 
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The system of equations (1)–(6) is solved for 

time interval [0, t] in the domain D = {0 ≤ x ≤ X, 
0 ≤ y ≤ Y, 0 ≤ σ ≤ 1}; X, Y, and t are the input 
model parameters. 

The boundary conditions for the flux of 
momentum and the thermal flux at  σ = 0 are 
specified with the use of the surface layer 
parameterization.  The background conditions of 
atmospheric circulation are considered on the upper 
boundary at σ = 1 and on the side boundaries of the 
domain Dt.  These conditions of model closing can be 
conveniently prescribed in terms of the first 
derivatives of the corresponding state functions.  The 
state of the system at t = 0 is assumed known.  It is 
prescribed on the basis of the background conditions 
when we examine the model scenarios. 
 

3. COMPUTER ASPECTS OF MODEL 

REALIZATION 

 
Discrete approximations for model (2) – (9) are 

constructed on the basis of the variational principle 
in combination with the splitting method.3 To this 
end, the variational model formulation is written in 
the form of the integral identity that considers all 
model equations, initial and boundary conditions, 
and relations describing the input parameters and the 

external sources in addition to the system of  
 

fundamental equations (2) – (9).  The main 
functional of this identity is constructed based on the 
conditions of the energy balance. 

To consider the temporal dependence, the weak 
approximation with fractional steps is used.  As a 
result, the splitting schemes are obtained with energy 
balance, in which two stages are tentatively 
distinguished: transport and matching. 

Without writing down the integral identity of 
the variational model, we note only that the 
following conditions should be satisfied to balance 
energetically the discrete approximations in spatial 
variables: 

1. The discrete operators of substance transport 
along trajectories of air mass motion should be 
antisymmetric.   The turbulent exchange operators 
should preserve their symmetry.3 

2. The components of the vector gradient of the 
atmospheric pressure entering into equations of 
motion (2) and (3) as well as into Eq. (7) for ω 
should be calculated from the same formulas. 

3. The approximations of the gradient operator 
in Eqs. (2) – (4) should match with the 
approximation of the divergence operator in 
continuity equation (6) and should preserve their 
antisymmetry peculiar to the transport operators in 
differential form. 

4. Approximations of ∂p/∂σ in hydrostatic 
equations and of the coefficient σ in the expression 
for calculating w should be selected to meet the 
relations analogous to  
 

 ∂p
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Now we consider the way of approximation of 
the gradients of functions h, σ and ð. 

First, we examine the term of the balance 
equation of the total system energy that describes the 
exchange between the kinetic and potential energy at 
[tj, tj+1]: 
 

I(w) = ⌡⌠

D
j
t

 
 
 
gρw dD dt. (12) 

 

After simple transformations, this expression 
assumes the form 
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where Ω 

j
t is the side boundary of the domain D 

j
t,  

D 

j
t = D × [tj, tj+1]; un is the component of the wind 

velocity vector u perpendicular to the boundary, dΩ 
is the element of area of the side boundary Ω of the 

domain D 

j
t. To satisfy this relation in its discrete 

form, we should take an appropriate approximation 
of w that matches in the spatial variables with the 
continuity equation.  In this case, gradients should be 
approximated so that the corresponding terms of the 
integral identity were antisymmetric. Then they will 
be canceled from the energy balance equation.  From 
these conditions we obtain the difference analogs for 
the gradient of the function h(õ, ó, t). 

To obtain matched approximations for gradients 
of the function p and to preserve their divergent 
character, we take the expression2 
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which is employed for matching of the fields of wind 
velocity vector and pressure and is used to construct 
the energy balance equation at [tj, tj+1], where the 
superscript adjacent to symbols of functions indicates 
the instant of time at which these functions are 
taken.  Matched divergence schemes for the gradients 
of the function ð are constructed in the same way as 
the approximations for the gradients of the function 
h, which allows the family of the consistent 
approximations to be obtained in both cases when the 
same schemes are selected. 

Now we formulate the sequence of main 
operations to implement the matching algorithm. 

1. We assume that at t = tj the functions u, v, 

ω, h, ð, and T are preset.  The function p 

j is 

determined from the hydrostatic equation, ρ 

j – from 

the equation of state and function h 

j – from Eq. (9) 
for the preset wind velocity field. 

2. The equations of motion are solved for the 

functions u
j+1

 and v 

j+1

 by the matrix pass technique 
for the vertical variable. 

3. From Eq. (8), we determine the function ω 

j+1

 
and from Eq. (9) – ∂h/∂t. 

4. The equation of heat flux is solved for T
j+1

. 

5. Equation (9) is solved for h 

j+1

. 

6. The value of the function p 

j+1

 is calculated on 
the upper boundary of the air mass by the formula 

(ln p 

j+1) = [(ln p 

j) $ g (h 

j+1 $ h 

j)]/(R ⋅ Tj+1). 
 

At the stage of transport, the integral identity is 
taken with symmetric turbulent exchange operators 
and gradient representation of the transport operators 
to construct the discrete approximations.  The 
weighting functions are specified by solving the local 
conjugate problems.  Finally, stable calculation 
algorithms are obtained for the approximation of the 
advective diffusion operators that have the properties 
of monotony and transportation.2  Here the following 
comments are necessary.  Because the model is 
considered in the domain with variable relief, the 
turbulent exchange operators can be preset in two 
ways, namely, in the Cartesian coordinates on 
surfaces z = const and directly in σ coordinates on 
surfaces σ = const. 

The transport operator is invariant under 
coordinates.  In the first case, the turbulent operator 
should be transformed to  σ-coordinates.  In so doing, 
additional terms appear in the equations caused by 
the difference of z-surfaces from σ-surfaces, which 
makes the construction of monotonic numerical 
algorithms difficult. To overcome this problem, the 
effective transport vector is introduced with 
components having diffusive terms due to change of 
coordinate axes.4 

It should be noted that characteristic scales 
differ at the stages of transport and matching of the 
fields.  Therefore, to approximate on the basis of 
physical meaning of the phenomena to be modeled, 
temporal steps for modeling should be chosen 
differently.  The procedure of matching of scales by 
itself creates no problems, because it is implemented 
based on the variational principle. 
 
4. NUMERICAL EXPERIMENTS ON MODELING 

OF MESOCLIMATES 

 
Here, we present some results of numerical 

experiments on modeling of mesoclimate in an 
industrial region.  By way of example, we examine 
the region with the relief and characteristics of the 
underlying surface corresponding to the Tomsk region 
with the city in its central part. The schematic map 
of the Tomsk region was given in Ref. 5. 

Characteristics of the underlying surface were 
prescribed in accordance with land capabilities: water 
surface, marshes, forest, localities, and city.  The 
surface temperature was specified in accordance with 
the surface type.  In this case, the temperature 
increased monotonically from the water surface to 
urban buildings.  This temperature distribution was 
observed in the daytime in spring–summer.  The city 
plays a role of a heat island.  The surface relief 
elevations increase from the northwest to the south, 
southeast, and east from 60 to 260 m.  The model  
 

scenario was organized so that at the initial instant, 
the state assumed stationary, the surface temperature 
remained unchanged with time, the wind velocity at 
the western boundary of this region did not change 
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over a period of modeling.  The atmospheric 
circulation developed under the impact of 
temperature contrasts and relief inhomogeneities. 

It gets stationary as time passes and acquires all 
the typical features of mesoclimate.  The time of 
establishing the stationary circulation regime was 5–
6 h in our case.  Calculations were done for the 
following input model parameters: X = Y = 100 km, 
Í = 3000 m, Δt = 10 s, Δx = Δy = 4000 m, Δσ = 0.1, 
σ = 1, μx = μy = 1500 m2/s, and ν = 10 m2/s. The 
figures shown below illustrate effects of orography and 
temperature contrast on the atmospheric circulation 
above the city and its environs and on the change of 
the position of the upper air mass boundary. 

 

Figure 1 illustrates the stationary field of the 
wind velocity vector on the surface σ = 0.1.  Lengths 
of arrows are proportional to the wind speed in the 
nodes of the calculation grid.  Small squares at the 
origins of arrows mean that the wind speed is smaller 
by an order of magnitude than the peak wind speed 
for this region.  In the environs and at the center of 
the region, air masses circulated more intensively.  
From the side exposed to the wind the circulation 
intensified due to the temperature contrast “river–
city” that engendered the breeze.  From the leeward 
side, the air flow with vortices whose directions were 
opposite to the prevailing air flow direction, 
markedly weakened. 

 

 
FIG. 1. Wind velocity vector field at σ = 0.1 in the plane (x, y). 

 

Figure 2 shows heights of the free upper boundary 
of the air mass at the final time moment.  Its gradient 
was most vividly pronounced above sections of the 
underlying surface with high temperature contrasts and 
it attained 83 m for the entire region.  Figure 3 shows 
 

the wind behavior in the vertical cross section parallel 
to the OX axis near the central part of the region.  
Ascending air motions are seen in the environs and 
descending flow is seen above the river and floodplain. 
When the background air flow was strong, the effects 
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FIG. 2. Contour lines of the heights of the free upper air mass boundary. 

 

 
FIG. 3. Vector field of wind velocity in the plane (x, σ) for y = 13 km. (Solid line shows the surface relief 
and Δσ = 0.1 corresponds to Δz = 300 m.) 
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of orography and temperature contrast were less 
pronounced. Thus, our numerical experiments 
demonstrated that the relief and the temperature 
contrast resulted in the formation of the air 
circulation, most intensive above the heat island 
where the height of the free boundary increased. 

 

5. CONCLUSION 

 

The mathematical model described in the present 
paper is oriented toward the study of joint effects of 
local relief and distributed natural and anthropogenic 
heat sources on the local circulation against the 
background of large-scale atmospheric motions.  By its 
structure, the model is a part of the model complex of 
interrelated problems on ecology and climate developed 
at the Computing Center of the Siberian Branch of the 
Russian Academy of Sciences.  The use of this model in 
the Cartesian coordinates and transition to the 
coordinates affixed to the local relief and free upper 
boundary of air masses obviates the necessity of the 
hydrostatic approach.  These situations arise in practice 
under the strong anthropogenic thermal impacts 
accompanied with emissions of pollutants. 
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