
386  Atmos. Oceanic Opt.  /June  1997/  Vol. 10,  No. 6 G.S. Rivin and P.V. Voronina 
 

0235-6880/97/06  386-07  $02.00  © 1997 Institute of Atmospheric Optics 
 

AEROSOL TRANSFER IN THE ATMOSPHERE: SELECTION OF A FINITE 

DIFFERENCE SCHEME 
 

G.S. Rivin and P.V. Voronina 

 

Institute for Computer Technologies,  
Siberian Branch of the Russian Academy of Sciences, Novosibirsk 

Received January 16, 1997  
 
In this paper we present a comparison of schemes from a wide class of 

monotonic and quasi-monotonic schemes of the approximation order not higher 
than 2, that are used for solving problems in meteorology, gas dynamics, and 
physics of plasma. Such a choice of the approximation order is caused by the 
fact that it is used in calculations of wind velocity components in the majority 
of atmospheric models. Numerical experiments have shown the Bott scheme to 
fit best of all the solution of the transfer equation for non-negative 
characteristics as compared to other investigated schemes of the second order. 

 
1. INTRODUCTION 

 

In this paper we describe the MAR system that 
is being developed at ICT SB RAS. The system 
simulates atmospheric processes and admixture 
transfer for expert estimations by calculational 
experiments to be performed using observational data 
on meteorological conditions and atmospheric 
pollution (see Ref. 1).  The problems to be solved 
relate to the  transfer of mass fraction of water and 
water vapor, the air density and intensity of aerosol 
substance migrated together with the air flow. As 
was pointed out in Ref. 2, requirement for monotony 
of the finite difference schemes used and the 
condition of non-negative values of the solution are 
basic for these problems since the error in the sign of 
these functions can result in absolutely incorrect 
description of the atmospheric processes estimated 
using these functions. The paper by S.K. Godunov 
(see Ref. 3) is the fundamental study of the 
monotonic schemes. Further development of the 
schemes and description of their applications can be 
found in Refs. 2, 4, and 5.  

For the problems in weather forecasting, ecology 
and climate theory two schemes (variants of Van Lire 
scheme described in Ref. 7 and that of the flux 
correction described in Ref. 4) were compared in 
Ref. 6, where the most appropriate scheme (a variant 
of Van Lire scheme described in Ref. 8) was chosen 
and using ecological problems as an example it was 
shown numerically, using actual information that the 
requirement of monotony in transfer problems is  of 
fundamental importance. Besides, the authors have 
pointed out that application of the monotonic 
schemes is very promising when making progressively 
increased body of calculations in weather forecasting, 
ecology and climate theory. This scheme was used in 
the investigation of an admixture transfer on the 
global scale (see Ref. 9). 

In this paper we compare a wider class of 
monotonic schemes than that used in Ref. 6, 
including the schemes used in meteorology (see 
Refs. 10 and 13)  
as well as in gas dynamics and plasma physics. The 
class of schemes compared is broadened by including 
those used in gas dynamics and plasma physics  
and careful study of practically all existing 
monotonic schemes (see Refs. 14 and 17). Besides, in 
our numerical experiments we have used as the initial 
data not only the function with high gradient, but 
relatively smooth ones. A wider class allows us to 
choose a more efficient method as compared to that 
suggested in Ref. 6. 

 
2. STATEMENT OF THE PROBLEM 

 

For a comparison, the following groups of 
schemes of calculations with the approximation order 
no higher than the second one are considered. Such a 
choice of the order is made because the values of the 
velocity vector components in most models of the 
atmosphere are correct to no higher than the second 
order.  

The first group includes the monotonic schemes 
used in meteorology. There are modified Van Lire 
scheme in the form described in Ref. 6, Bott scheme 
(see Ref. 10), and Smolarkevitch scheme (see 
Refs. 11 and 13). 

The second group consists of the schemes from a 
relatively wide class which according to Ref. 16 
demonstrate the best efficiency. There are the 
schemes with Van Lire limitation (see Ref. 17), and 
with the UNO (Uniformly Nonoscillatory Scheme) 
limitation (see Ref. 18), with SUPERBEE limitation 
(see Ref. 19), with Harten compression (see Ref. 20), 
respectively. 

The third group includes for completeness of the 
comparison two schemes which already became 
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classical. There are a monotonic explicit scheme and 
a non-monotonic Lax-Vendorf one (see Ref. 21). 

Estimation of the approximation order of the 
scheme used in this paper has been made by the 
authors of the above references. 

The comparison is carried out using a group of 
tests which are model for meteorological problems. 
The group includes solution of the following 
equation: 

 

 ∂ϕ

 ∂t  + u 
 ∂ϕ

 ∂x = 0, (1) 

 

ϕ(x, 0) = ϕ0(x),  (2) 
 

where u = const > 0,  a ≤ x ≤ b,  0 < t < T. 
As is known, solution of Eq. 1 has the form: 
 

ϕ(x, t) = ϕ0(x $ ut).  (3) 
 

The condition of periodicity is used as the side 
boundary condition.  

 

3. BRIEF DESCRIPTION OF THE SCHEMES 

COMPARED 

 

Expression (1) is a special case of the following 
expression: 

 

 ∂ϕ

 ∂t  + 
 ∂F(ϕ)

∂x  = 0, (4) 

 
(F(ϕ) = ,ϕ in Eq. (1)). 

Let us consider the following grids and grid 
functions: 

 

D
ϕ

h = {xj; xj = a + (J + j) h, j = $ J, ..., J}, 
 

D
F
h = {xj+1/2; xj+1/2 = xj + h/2, j = $ J, ..., J $ 1}, 

 

D
τ
 = {tn; tn = nτ, n = 0, ..., N}, 

 

D(ϕhτ) = D
ϕ

h × Dτ
, 

 

D(F
hτ

) = DF
h × Dτ

, 

 

where D(ϕhτ) and D(F
hτ

) are the domains of 

definition of the grid functions ϕhτ and F
hτ

, 
respectively, b = a + 2Jh, T = Nτ.  

If we designate 
 

λ = τ/h,  cnj = λ unj,  ϕ
n
j = ϕhτ(xj, tn),  

 

F
n
j+1/2 = F

hτ
(xj+1/2, tn), 

 

where cnj  is the Currant number, according to Ref. 17 
the following form can be used as a difference scheme 
for Eq. (4): 
 

ϕn+1
j  = ϕnj $ λ(Fn

j+1/2 $ Fn
j$1/2),  (5) 

 

where 
 

F
n
j+1/2 = uj+1/2 

ϕrj+1/2
 

+ ϕlj+1/2

2
 $ ⏐uj+1/2⏐

ϕrj+1/2
 

$ ϕlj+1/2

2
 

 

and 
 

ϕrj+1/2 = ϕrj+1 $ 
1
2
 (1 + cnj+1) L

n
j+1, 

 

ϕlj+1/2 = ϕnj + 
1
2
 (1 $ cnj) L

n
j. 

 

Values of L
n
j and L

n
j+1 of grid function L

hτ
 (this 

function is called to be a limiter) depend on the 

increment of ϕhτ in the ranges (õj–1, xj) and (xj, xj+1), 
respectively.  

Using the following designations: 
 

Δϕnj+1/2 = ϕnj+1 $ ϕnj,   Δϕ
n
j = ϕnj+1 $ ϕnj$1, 

 

Δ2ϕnj = ϕnj+1 $ 2ϕnj + ϕnj$1, 
 

MINMOD (x, y) = sgn(x)max{0, min(⎜x⎜, ysgn(x))}, 
 

MAXMOD (x, y) = sgn(x)max(⎜x⎜, ⎜y⎜) 
 

and according to Ref. 17 one can write the limiter 
considered in the following form: 

– the VL (Van Lire) limiter: 

L
n
j =  

=
⎩⎪
⎨
⎪⎧sgn(⏐Δϕ

n

j+1/2
⏐)min(2⏐Δϕn

j$1/2
⏐,⏐Δϕn

j
⏐/2, 2⏐Δϕn

j+1/2
⏐),

0,               if  Δϕn
j+1/2

 Δϕn
j$1/2

⏐ ≤ 0;
 (6) 

$ the VLm (Van Lire modified): 
 

L
n
j = 

1
2
 Δϕnj+1/2 $ 

1
2
 Sj Δ

2ϕnj,  (7) 

 

where   Sj = 
⎜Δϕnj+1/2⎜ $ ⎜Δϕnj$1/2⎜

⎜Δϕnj+1/2 ⎜ + ⎜Δϕn
j$1/2⎜

 ; 

 

– the SB (Superbee): 
 

L
n
j = MAXMOD {MINMOD (2Δϕnj+1/2, Δϕ

n
j$1/2), 

 

MINMOD (Δϕnj+1/2, 2Δϕ
n
j$1/2)};  (8) 

 

– the UNO limiter: 

L
n
j  =MINMOD (Δϕnj+1/2 $ 

1
2
 dn

j+1/2, Δϕnj$1/2 + 
1
2
 dn

j$1/2), 

  (9) 
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where dn
j$1/2 = MINMOD (Δ2ϕnj+1, Δ

2ϕnj); 
 
– Harten compression: 
 

L
n
j = MINMOD (Δϕnj+1/2 , Δϕnj$1/2)(1 + w θj), (10) 

 

where w is the compression parameter (as proposed in 
Ref. 20, in our experiments w = 2) and  
 

θj = 
⎜Δϕnj+1/2 $ Δϕn

j$1/2⎜

⎜Δϕnj+1/2⎜ + ⎜Δϕnj$1/2⎜
 . 

 

Let us now focus on Smolarkevitch (see Ref. 11) 
and Bott (see Ref. 10) schemes. The explicit scheme 
expressed by Eq.( 5) and directed “counter the flux” 
with  

 

F
n
j+1/2 = 

u
n
j+1/2

 

+ ⎜unj+1/2⎜
2

 ϕnj  + 

u
n
j+1/2 $

 

⎜unj+1/2⎜
2

 ϕnj+1, (11) 

 

is chosen as a basic for constructing Smolarkevitch 
scheme. 

This scheme is of the first order approximation 
it is monotonic, but, as known, it has high 
calculational viscosity (see Ref. 21). For the effect 
of the viscosity to be decreased we introduce 
additional correction step which is analogous to the 
first one but here “antidiffusion velocity” is used 
instead of the transfer velocity. To perform the step 
“antidiffusion velocity” is defined as 

 

u
∼
j+1/2 = 

(⎜uj+1/2⎜h $ τu2
j+1/2)(ϕ*

j+1 $ ϕ*
j)

(ϕ*
j  + ϕ*

j+1 + ε)h
,  (12) 

 

where ε is a small parameter determined by a 

computer performance characteristics (ε = 2
–m

, 
where ò is the number of bits used to write 
mantissa of a real number, or the so called 
instrumental null). 

Generally speaking similar idea was published in 
Ref. 4. 

Bott scheme is a generalization of the scheme of 
integral fluxes (see Ref. 22) by introducing 
additional steps which allow one to retain non-
negative solution (at non-negative initial solution 
values) and to reduce the phase error. Explicit 
scheme expressed by Eq. (5) with  

 

F
n
j+1/2 = 

 i
+
l,j+1/2

il,j
 ϕn

j $ 
 i

$
l,j+1/2

il,j+1
 ϕn

j+1 ,  (13) 

 

where i
+
l,j+1/2 = max (0, I+

l),   i
$
l,j+1/2 = max (0, I$

l), 

il,j = max (Il,j, i
+
l,j+1/2 + i$l,j$1/2 + ε)  forms the basis 

for Bott scheme. 
Here ε has the same meaning as in Eq. (12). 
 

I
+
l  = 

⌡
⌠

1/2$c
+

j

1/2
 ϕn

j,l(x′) dx′,  (14) 

I 

$
l  = 

⌡
⌠

$1/2

$1/2+c
$

j
 ϕnj+1,l(x′) dx′, (15) 

 

Il = 
⌡
⌠

$1/2

1/2
 ϕn

j,l(x′) dx′, (16) 

 

where c
n±
j  = ±(cnj ± ⎜c

n
j⎜)/2. 

For calculating integrals the function ϕ is 
expressed by the following polynomial: 

 

ϕnj,l(x′) = ∑
k=0

l

 aj,k x′k ,   x′ = (x $ xj)/h  

 

and  $ 1/2 ≤ x′ ≤ 1/2. (17) 
 

Then  
 

I
+
l  = ∑

k=0

l

 
aj,k 

(k + 1) 2(k+1) [1 $ (1 $ 2 c+
j)

k+1], (18) 

 

I 

$
l  = ∑

k=0

l

 
aj+1,k 

(k + 1) 2(k+1) ($ 1)k [1 $ (1 $ 2 c$
j)

k+1], (19) 

 

Il = ∑
k=0

l

 
aj,k 

(k + 1) 2(k+1) [($ 1)k + 1]. (20) 

 

In our experiments l = 4 and  
 

aj,0 = ϕj,   aj,1 = 
1
12

 ($ ϕj+2 + 8ϕj+1 $ 8ϕj$1 + ϕj$2), 

 

aj,2 = 
1
24

 ($ ϕj+2 + 16ϕj+1 $ 30ϕj + 16ϕj$1 $ ϕj$2), 

 

aj,3 = 
1
12

 (ϕj+2 $ 2ϕj+1 + 2ϕj$1 $ ϕj$2), 

 

aj,4 = 
1
24

 (ϕj+2 $ 4ϕj+1 + 6ϕj $ 4ϕj$1 + ϕj$2). 

 

Note that for improving the Bott’s scheme 
efficiency authors of Ref. 23 use the trapezium 
method instead of the exact integration.  

 
4. NUMERICAL EXPERIMENT 

 

All calculations were made using Currant 
number less than 1 at the following values of 
parameters: spatial step h = 3750 m, time 
T = 24 hours, transfer velocity u = 5 m/s, a = –
b = 25 h. The values of these parameters are equal to 
those used in Ref. 6 except for T = 3 h 20 min. 
Although the values of a and b are for a convenience 
changed as compared to that in Ref. 6, this 
distinction has not any effect on the calculation 
results because the interval length is the same. 

The following functions were chosen as the 
initial in the numerical experiments: 
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ϕ
(1)
0 (xj) = 0.5 + 0.5 sin [4π xj/(b $ a)]; (21) 

 

ϕ
(2)
0 (xj) = 

⎩
⎨
⎧

>

1,   if x$10 < xj < x0,

0,   otherwise;
 (22) 

 

ϕ
(3)
0 (xj) = 

⎩
⎨
⎧

>

1,   if xj = x$5,

0,   if xj ≠ x$5;
 (23) 

 

ϕ(4)
0 (xj) = 

⎩
⎨⎧

>

0.2 xj +2,   if x$10 ≤ xj ≤ x$5,
$ 0.2 xj,    if x$5 ≤ xj ≤ x0.

 (24) 

 
Note that setting the initial value of the 

solutions ϕ(1)
0 , ϕ(2)

0 , ϕ(3)
0  and ϕ(4)

0  one can simulate 
transfer of large scale variable cloudiness, large scale 
uniform cloud formations, emiss+of air pollution at a 
single point, and non-uniform distribution of a 
substance, respectively.  

The following parameters were used to compare 
the results obtained: 

– the mean absolute error of solution of the 
finite-difference problem 

 

εa = ⏐⏐ (ϕ(x, T))h $ ϕh⏐⏐ 1/M,  (25) 
 

– the error in estimation of the maximum value  
 

εmax = ⏐⏐ ϕ(x, T)⏐⏐ C $ ⏐⏐ ϕh⏐⏐ ∞ , (26) 
 

– the maximum absolute error of solution of the 
finite-difference problem 

 

ε∞ = ⏐⏐ (ϕ(x, T))h $ ϕh⏐⏐ ∞ . (27) 
 

Here ϕh = ϕhτ ⏐
N is the solution of finite-

difference equation at t = Ò; Ì = 2J + 1 is the 

number of the grid nodes D
ϕ

h; (ϕ(x, T))h is the 
projection of a solution of the initial differential 
equation at t = Ò on the space of the grid functions 

ϕh with determination area D
ϕ

h. The projection is 
given by the following expression: 
 

(ϕ(x, T))h = {ϕ(xj, T);   j = $ J, ..., J}. 

 

The following parameters are used as norms: 
 

⏐⏐ ϕh⏐⏐ 1= ∑
j=$J

J

 ⎜ϕhj⎜,  ⏐⏐ ϕh⏐⏐ ∞= max
$J ≤ j ≤ J

 ⎜ϕhj⎜, 

 

⏐⏐ ϕ(x, T)⏐⏐ C = max
a ≤ x ≤ b

 ⏐ϕ(x, T)⏐. 

 
The following designations are used in the 

experiment description: E – the explicit scheme,  
LV – Lax-Vendorf scheme, S – Smolarkevitch 
scheme, VL – the scheme with Van Lire limiter, 
VLm – modified Van Lire scheme, UNO – the 
scheme with UNO limiter, B – Bott scheme, SB – 
the scheme with SUPERBEE limiter, H– the scheme 
with Harten compression. 

The results of calculations with sine-shaped 
solution are presented in Table I and Fig. 1.  As is seen 
from Table I, the explicit scheme demonstrates the 
worst results. High absolute error and significant 
deviation from the exact solution (the maximum is 
decreased by about one half) are evident. Small error in 
determination of the maximum value in Lax-Vendorf 
scheme demonstrates seemingly good results obtained 
using the scheme. However, significant mean absolute 
error shows that this is not the case because of a 
reasonably high phase error. Smolarkevitch scheme is 
also unsuccessful for the given initial field, as well. 
Perhaps, modified Van Lire scheme used in Ref. 6 well 
compares with the previous one. The scheme with Van 
Lire limiter gives reasonably good results. As to the 
scheme with UNO limiter, in spite of the fact that it 
estimates the maximum value with a small error, 
relatively high mean error shows that the scheme does 
not suit well that initial function. From the remaining 
schemes the Bott scheme demonstrates better results as 
compared to those obtained with SUPERBEE limiter 
and Harten compression and especially as compared to 
the above schemes. It should also be mentioned that 
the mean absolute error and error of determination of 
the maximum value for Bott scheme do not change first 
three significant figures at different Currant numbers.  

 

 

TABLE I.  Solution error for the initial sine-shaped field 
 

 c = 0.2 c = 0.4 c = 0.6 c = 0.8 
Scheme ε= εmax ε= εmax ε= εmax ε= εmax 

E  
LV 
S  
Vlm 
VL 
UNO 
B 
SB 
H 

0.300 
0.077 
0.092 
0.054 
0.038 
0.039 
0.016 
0.031 
0.025 

– 0.472 
– 0.006 
– 0.098 
– 0.107 
– 0.072 
– 0.019 
– 0.002 
– 0.044 
– 0.027 

0.282 
0.065 
0.076 
0.042 
0.030 
0.023 
0.016 
0.028 
0.022 

– 0.443 
– 0.011 
– 0.067 
– 0.092 
– 0.062 
– 0.016 
– 0.002 
– 0.041 
– 0.027 

0.244 
0.046 
0.059 
0.034 
0.024 
0.013 
0.016 
0.024 
0.019 

– 0.383 
– 0.011 
– 0.041 
– 0.074 
– 0.051 
– 0.010 
– 0.002 
– 0.034 
– 0.023 

0.165 
0.019 
0.039 
0.023 
0.019 
0.011 
0.016 
0.019 
0.017 

– 0.259 
– 0.007 
– 0.015 
– 0.048 
– 0.034 
– 0.006 
– 0.002 
– 0.022 
– 0.014 
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FIG. 1. Exact and approximate solutions at T = 24 hours and c = 0.4 obtained using sine-shaped initial field. 
 
 
 

TABLE II.  Solution error for the initial field in the form of rectangular step. 
 

 c = 0.2 c = 0.4 c = 0.6 c = 0.8 
Scheme εa εmax εa εmax εa εmax εa εmax 

E 0.232 –0.639 0.216 –0.588 0.191 –0.508 0.146 –0.350 
LV 0.151 –0.016 0.132 –0.016 0.108 0.047 0.083 0.108 
S 0.123 –0.022 0.110 –0.160 0.095 –0.091 0.076 0.020 
VLm 0.088 –0.172 0.078 –0.135 0.067 –0.089 0.054 –0.033 
VL 0.072 –0.096 0.063 –0.067 0.056 –0.039 0.047 –0.010 
UNO 0.077 –0.037 0.070 –0.008 0.064 0.005 0.055 0.003 
B 0.049 –0.114 0.046 0.098 0.041 0.072 0.035 0.069 
SB 0.039 –0.023 0.036 –0.019 0.035 –0.012 0.032 –0.004 
H 0.044 –0.006 0.042 –0.005 0.039 –0.002 0.037 0.005 

 
 

 
FIG. 2. Exact and approximate solutions obtained 
using the initial field with the step width of 9 
points of the grid and UNO, SUPERBEE, Harten 
, Bott and Smolarkevitch schemes. 
 

The results of solution of the transfer equation 
with the initial field in the form of rectangular step 
described by Eq. (22) are presented in Table II and 
Fig. 2. For this initial pulse the schemes considered 
could be subdivided into three groups. The explicit, 
Lax-Vendorf and Smolarkevitch schemes from the first  
 

group were most inefficient. The second group 
included Van Lire, modified Van Lire schemes, and 
that with UNO limiter which have demonstrated 
better results as compared to those obtained using 
schemes from the above group. Nevertheless, the 
schemes from the second group are less efficient than 
those from the third group which includes Bott 
scheme, and these with SUPERBEE limiter and 
Harten compression. The last group of schemes 
provides closely related mean average error of the 
difference solution, but the scheme with Harten 
compression gives higher accuracy of the maximum 
value. Besides, the experiment with the transfer 
extended up to 10 days was carried out. In that case 
the scheme with Harten compression was, as before, 
the best, while the schemes with SUPERBEE and 
Harten limiters provide much the same results. 
Figure 3 depicts the plots of the solutions obtained at 
different Currant numbers for the scheme with 
Harten compression. One can see that the scheme 
provides the error of approximately the same order 

(except for the calculation with Currant number c
n
j

 = 0.8). However the calculational results remain 
quite good in spite of such a long transfer time. 
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FIG. 3. Exact and approximate solutions at T = 
240 h and different Currant numbers obtained using 
the initial field with the step width of 9 points of 
the grid and Harten scheme. 
 

The results of experiments performed using the 
initial field with “narrowed” width of the step are 
presented in Fig. 4. One can see that all schemes give 
the solution profiles identical to those obtained at the 
“step” width of 9 points. However the maximum 
value is significantly lowered and the solution 
provided by Bott scheme is closer to the maximum of 
the exact solution as compared to those obtained 
using other schemes.  

The initial field in the form of point sources 
described by Eq. (23) could be considered as limiting 
narrowing of the step. The solution error for this case 
is given in Table III. 

 

 
 

 
 

FIG. 4. Exact and approximate solutions at T = 
24 h and c = 0.4 obtained using the initial field 
with the step width of 5 points of the grid. 
 

TABLE III.  Solution error for the initial field in the form of a point pulse. 
 

 

Scheme c = 0.2 c = 0.4 c = 0.6 c = 0.8 
 εa εmax εa εmax εa εmax εa εmax 

E 0.038 –0.958 0.038 –0.952 0.037 –0.941 0.036 –0.917 
LV 0.064 –0.864 0.055 –0.856 0.049 –0.847 0.043 –0.818 
S 0.036 –0.908 0.035 –0.897 0.035 –0.883 0.034 –0.854 
VLm 0.035 –0.894 0.035 –0.885 0.034 –0.871 0.033 –0.841 
VL 0.034 –0.878 0.034 –0.869 0.034 –0.855 0.032 –0.825 
UNO 0.034 –0.087 0.034 –0.857 0.033 –0.839 0.032 –0.808 
B 0.030 –0.0776 0.030 –0.766 0.029 –0.751 0.028 –0.725 
SB 0.034 –0.855 0.033 –0.848 0.033 –0.835 0.032 –0.807 
H 0.033 –0.851 0.033 –0.844 0.033 –0.831 0.032 –0.804 
 

TABLE IV.  Solution error for the initial field in the form of a triangle pulse. 
 

 c = 0.2 c = 0.4 c = 0.6 c = 0.8 
Scheme εa εmax εa εmax εa εmax εa εmax 

E 0.128 –0.797 0.119 –0.767 0.107 –0.719 0.083 –0.619 
LV 0.131 –0.393 0.109 –0.328 0.088 –0.350 0.058 –0.287 
S 0.072 –0.551 0.063 –0.506 0.053 –0.451 0.041 –0.340 
VLm 0.052 –0.493 0.045 –0.457 0.036 –0.406 0.023 –0.319 
VL 0.040 –0.427 0.034 –0.393 0.027 –0.347 0.015 –0.205 
UNO 0.044 –0.381 0.033 –0.333 0.023 –0.272– 0.015 –0.205 
B 0.010 0.0130 0.010 –0.123 0.010 –0.113 0.010 –0.100 
SB 0.023 –0.320 0.021 –0.304 0.018 –0.273 0.015 –0.221 
H 0.021 –0.303 0.018 –0.285 0.016 –0.256 0.012 –0.210 
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FIG. 5. Exact and approximate solutions at T = 24 h and c = 0.4 obtained using a triangle pulse as the initial 

field. 
 

One can see that the schemes considered provide 
approximately the same error, nevertheless, Bott 
scheme demonstrates somewhat better results. 

The estimations for the initial field in the form 
of a triangle pulse are listed in Table IV. Plots of the 
corresponding solutions are presented in Fig. 5. In 
that case unquestionable advantage should be given 
to Bott scheme. The rest schemes are comparable to 
each other. The schemes with SUPERBEE limiter 
and Harten compression demonstrate somewhat better 
results among these schemes. 

 

5. CONCLUSION 
 

The numerical experiments performed for different 
tests using one-dimensional transfer equation have 
shown that Bott scheme provides the most successive 
results. For the initial field in the form of a rectangular 
pulse with a relatively wide step the best results were 
obtained using the scheme with Harten compression. 
The fact of relatively poor efficiency of Smolarkevitch 
scheme is found to be unexpected.  The other schemes 
(except of course the explicit and Lax-Vendorf 
schemes) have demonstrated relatively high 
performance for a part of the tests, while the modified 
Van Lire scheme have not advantages over the initial 
formulation. 
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