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We present here a new parametrization of the radiative properties of 
broken clouds, which uses the effective cloud fraction as a parameter. We have 
shown that quite a simple and single valued ratio exists between the effective 
cloud fraction in the visible, Nvis

e , and short-wave spectral regions, Nsw

e  = f(Nvis

e

). We also present in this paper a study of the effects due to random geometry 
of clouds on the effective cloud amount in the visible region. It is also shown 
that small variations of the atmospheric aerosol optical thickness 
(0 ≤ τa ≤ 0.22) and of the cloud microstructure may be neglected in the 
calculations of Nvis

e  at a fixed value of the cloud optical thickness. Among the 
advantages of the parametrization proposed there are the possibility of 
accurately taking into account the effects due to random geometry of clouds 
and the fact that the development of a numerical model of Nvis

e  does not 
require long computer time, and, finally, there is no need in making serious 
changes into the GCM radiation codes currently in use. 

 
1. INTRODUCTION 

 

In order to improve radiation blocks entering in 
the general circulation models of the atmosphere 
(GCMs) methods need to be developed for 
calculating fluxes of short- and long-wave radiation 
that would allow for the effects due to stochastic 
geometry of broken clouds. The development of new 
radiation blocks should incorporate to a maximum 
possible degree the advances of modern radiation 
transfer theory achieved within the model of a plane 
parallel atmosphere. On the one hand this would 
certainly save time necessary for developing schemes 
for parametrization of the radiation properties of 
broken clouds and, on the other hand, it would 
minimize the changes to be done for improving the 
radiation codes for GCMs available. 

These requirements will be met if one uses the 
concept of the effective cloud fraction, Ne, for 
describing the effects due to the 3-D geometry of 
broken clouds. The idea of the effective cloud 
fraction can be explained as follows. The mean 
radiation flux in broken clouds, Fbc, may be 
represented by a linear combination of the fluxes 
under the overcast, Fpp, and clear sky, Fclr, 
conditions weighted with the factors Ne and (1 –
 Ne), respectively. Since the values Fpp and Fclr may 
be calculated using the radiation codes already 
available the task reduces to the search for a fast and 
convenient way of calculating Ne. 

Among the first such schemes of parametrization 
of the radiation properties of cumulus clouds was the 

scheme proposed in Ref. 1. The idea of this scheme is 
in the assumption that the radiation properties of a 
cloud field are equivalent to those of an effective 
cloud whose geometric size and optical thickness 
increase with increasing cloud fraction. It is obvious 
that such a parametrization does not allow for 
shading and multiple light scattering among clouds, 
which naturally gives rise to a systematic 
underestimation of the effective cloud amount at 
large solar zenith angles.2 

In Refs. 3 to 7 the reader will find a discussion 
of a cloud field model in the form of regular spaced 
clouds of one and the same shape (cylinders, 
parallelepipeds, and so on) and having the same 
optical thickness, the so called “chess-board”-model. 
Welch and Wielicki6,7 have derived a dependence of 
Ne, in the visible region, on the cloud fraction N, 
zenith angle of the Sun, ξÁ, and the aspect ratio 
γ = H/D, where H and D are the height and 
diameter of a cloud. In their calculations they did 
not take into account the contributions coming from 
the atmosphere out of clouds and they assumed the 
albedo of the underlying surface, As, to be zero. 

A general drawback of such parametrizations is 
that they do not allow for the stochastic geometry of 
broken clouds. Since the radiation properties depend 
nonlinearly on the cloud optical and geometric 
parameters these parametrizations are unable to 
adequately describe the radiation transfer in real 
broken clouds. Moreover, the authors of the above 
mentioned papers restrict their considerations only to 
the visible region and do not establish the ratio 
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between the effective cloud fraction in the visible 
and short-wave regions. Therefore the question of the 
applicability of those parametrizations to calculations 
of the integral, over the wavelength spectrum, fluxes 
of solar radiation still needs to be addressed. 

In the research presented in this paper we aimed 
at developing a new parametrization of the radiation 
regime in broken clouds that treats the effects due to 
random geometry of the cloud fields as well as 
enables us to thoroughly make use of the results 
obtained in the course of the development of modern 
radiation codes for GCMs. 

We have laid the foundation necessary for 
developing such a parametrization, namely, 

1) we have derived, within the Poisson model of 
broken clouds, equations for the mean radiance and 
have developed efficient algorithms for their solution 
by the Monte Carlo method (see Refs. 8–10). These 
algorithms enable time saving calculations of the 
spectral mean fluxes of solar radiation.11,12 We have 
also studied in detail the mean, over ensemble of 
cloud fields, spectral and integral fluxes of short-
wave radiation and the absorption of radiation.10,13–15 

2) we have calculated the mean spectral and 
integral fluxes of up going and down going radiation 
for 12 height levels in the atmosphere and 250 
different sets of the task input parameters, the latter 
varying within the following ranges: 

– optical thickness of clouds 5 ≤ τ ≤ 60; 
– cloud fraction 0 ≤ Ν ≤ 1; 
– aspect ratio 0 ≤ γ ≤ 2, where γ = H/D, D is 

the horizontal size characteristic of the clouds. These 
limits of the aspect ratio, γ, variation enable us to 
take into account both stratus clouds (γ << 1) and 
cumulus clouds extended along vertical direction 
(γ = 2); 

– zenith angle of the Sun 0° ≤ ξÁ ≤ 75°; 
– albedo of the underlying surface As varies 

from 0 for the ocean to 0.8 for a new fallen snow. 
 

2. MODEL AND METHODS OF SOLUTION 
 

The model of the atmosphere and techniques 
used for calculations of short-wave radiation fluxes in 
broken clouds are described in detail in Ref. 12. Here 
we only briefly describe them. 

For the atmospheric model we take a 
combination of horizontally homogeneous layers 

occupying the height range 0 ≤ z ≤ H
t

atm, with the 
meteorological parameters, aerosol concentration, and 
optical properties being constant within a layer. 
Layer thicknesses are selected in accordance with the 
vertical resolution in GCMs (see, for example, 
Refs. 6 and 17 and the references therein). Thus we 
have calculated upward and downward fluxes of solar 
radiation for 12 height levels: 
0, 0.5, 1, 1.5, 3, 5.5, 7, 9, 10, 12, 14, and 16 km. 

Aerosol model. Within each layer we set the 

extinction coefficient σ
a
λ and the single scattering 

albedo w
a
λ (here “λ”denotes the radiation 

wavelength). The vertical structure and the spectral 

behavior of the optical parameters (σa
λ, w

a
λ) are taken 

to be the same as in the cyclic mean model.18 In our 
calculations we assume the extinction coefficient to 
be independent of the wavelength being equal to 

σ
a
λ = 0.69 µm. The single scattering albedo was 

calculated for six wavelengths λ = 0.69, 0.86, 1.06, 

1.67, 2.36, and 3.39 μm. The values of w
a
λ at other 

wavelengths are calculated using a linear 
interpolation. 

In our calculations we neglect the spectral and 
height behaviors of the aerosol scattering phase 

function g
a
λ(ω, ω′, z) and calculate it by Mie theory 

formulas19 for the haze L and wavelength 
λ = 0.69 μm. 

As known the radiation properties of clouds only 
weakly depend on the aerosol optical parameters 
(except maybe for such extraordinary situations like 
dust storms), so the use of a relatively simple aerosol 
model in calculations is justified. 

Model of the gaseous atmosphere. The 
molecular gaseous components of the atmosphere that 
absorb the radiation in the visible and near IR 
regions most strongly are water vapor, carbon 
dioxide, and ozone. We shall neglect absorption by 
the ozone in our calculations since the upper 
boundary of the atmosphere in our model is at the 

height H
t

atm = 16 km, well below almost all of the 
column ozone in the atmosphere. 

Solar radiation absorption by atmospheric gases 
may be accounted for using various models of the 
atmospheric transmission. As far as we know from 
the literature available there are no any reliable 
indications of the advantages of any particular model 
against others in application to our purposes and 
because the form of the transmission function is not 
so important for the parametrization proposed, as 
will be shown below, we use the transmission 
functions for the absorption by water vapor and 
carbon dioxide in the form presented in Refs. 20–22 
 

PΔλ = exp ($βΔλ(w*)mΔλ) .  (1) 

 
Here Δλ is the spectral resolution, (in the 

spectral region 0.7–3.6 μm Δλ equals 0.01 μm, on the 
average); w* is the equivalent (reduced) mass of the 
absorbing gas 
 

w* = 
1

cos θ
 ⌡⌠
z1

z2

 
 ρ(z) ⎝

⎛
⎠
⎞p(z)

p0

nΔλ

 dz ,  (2) 

 
where βΔλ, mΔλ, and nΔλ are empirical coefficients; 
ρ(z) and p(z) are the concentration of the absorbing 
component and the atmospheric pressure at the height 
z, p0 = 1 atm; θ is the zenith angle at which the 
observation is performed. In order to account for the 
joint effect of absorption by water vapor and carbon 
dioxide we use the product of the corresponding 
transmission functions described by formula (1). 
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Since the profile of an absorbing gas 
concentration, ρ(z), entering into the Eq.(2) may 
vary depending on season and geographical zone we 
take, in our calculations, the moisture profile 
characteristic of midlatitude summer,23 while the 
carbon dioxide is assumed to be uniformly mixed 

everywhere in the atmosphere, its concentration 
being equal to 330 ppm. 

The meteorological and optical parameters of the 
atmosphere necessary for making calculations are 
given in the Table I (each layer is characterized by 
its upper boundary height). 

 
TABLE I. Profiles of the optical and meteorological parameters of the atmosphere. 

 

Number of 
the layer 

Pressure, 
hPa 

Height, 
km 

 ρ, g/m3 σ
a
λ = 0.69 µm w

a
λ = 0.69 µm 

 1000 0.0 –    –  – 
1 950 0.5 9.33 0.768⋅10$1 0.862 
2 900 1.0 7.95 0.586⋅10–1 0.908 
3 850 1.5 6.77 0.423⋅10–1 0.933 
4 700 3.0 4.96 0.188⋅10–1 0.947 
5 500 5.5 2.09 0.320⋅10–2 0.923 
6 400 7.0 0.578 0.093⋅10–2 0.958 
7 300 9.0 0.158 0.055⋅10–2 0.967 
8 250 10.0 0.317⋅10–1 0.047⋅10–2 0.966 
9 200 12.0 0.36⋅10–2 0.044⋅10–2 0.966 
10 150 14.0 0.13⋅10–2 0.022⋅10–2 0.975 
11 100 16.0 0.068⋅10–2 0.021⋅10–2 0.977 

 
The underlying surface. We assume the 

underlying surface to reflect incident radiation 
according to Lambert’s law with its albedo being As. 

Optical model of clouds. We isolate the clouds 

as a separate layer H
b
cl ≤ z ≤ H

t
cl , H

b
cl = 1 km, and  

H
t
cl = 1.5 km. For the optical model of clouds we 

take random fields of the extinction coefficient 
σλ(r) κ(r), single scattering albedo wλ(r) κ(r), and 
the scattering phase function gλ(ω,ω′,r) κ(r). The 
mathematical model of the field (r) is constructed 
based on Poisson fluxes of points on straight lines.8–
10 We assume the optical parameters to be constant 
within an individual cloud, that is σλ(r) = σλ, 
wλ(r) = wλ, gλ(ω,ω′,r) = gλ(ω,ω′). 

The reasons for taking the Poisson model are as 
follows. 

1) We have derived a closed system of equations 
for the mean radiance for the case of statistically 
homogeneous cloud fields and developed efficient 
algorithms for solving it using the Monte Carlo 
method11 (method of closed equations). The accuracy 
and applicability limits of these equations may be 
assessed by comparing with the calculations made 
using numerical simulations of the cloud and 
radiation fields. The results of such a comparison 
showed that the equations for mean radiance provide 
quite an acceptable accuracy24 and may be used to 
describe the radiation transfer in any model of 
statistically homogeneous cloudiness, since one may 
neglect the influence of the cloud base 
configuration25 when calculating mean fluxes and 
brightness fields. 

For the case of nonmarkovian statistics there are 
formula for splitting the correlation and equations for 
the moments of radiance proposed in Refs. 26 and 27. 

However, these equations are difficult for use in 
practice since the random fields are unknown.  

2) The constructive feature of the Poisson model 
of clouds is in the fact that it allows one to relate its 
input parameters to the data of field measurements 
and to give physical interpretation of the calculated 
results. The comparison10,28 made between the 
calculated and experimentally measured statistical 
properties of the radiation and clouds show that the 
equations for the mean radiance derived using the 
Poisson model correctly describe the basic features of 
the radiation transfer process in cumulus clouds. 

Cumulus clouds may have quite fantastic and 
irregular shapes in a wide variety of scales and are 
essentially different than the shape of such simple 
geometric bodies like sphere, cylinder, parallelepiped, 
and frustum of an overturned paraboloid. Of course, 
more complicated models are now being developed 
for a more adequate description of cumulus clouds, 
but it is a reality that only numerical methods 
provide a possibility of calculating their radiation 
properties and they are time consuming. For that 
reason no parametrization schemes have been created 
so far based on more complicated though more 
realistic cloud models. 

Method of solution. Our calculations of the 
mean radiation fluxes in a statistically homogeneous 
broken cloudiness use the Monte Carlo method 
developed for solving the system of equations for 
mean radiance.10, 11 In addition to such traditionally 
acknowledged advantages of this method as the 
controllable accuracy, a possibility of making 
calculations for cloud fields with the model optical 
and geometric parameters close to those of real 
clouds, as well as the possibility of taking into 
account the effects due to multiple light scattering in 
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clouds, the Monte Carlo method correctly treats the 
effects due to stochastic geometry of clouds. 

In order to improve the efficiency of the 
algorithm when calculating the spectral fluxes in  
the spectral region from 0.7 to 3.6 μm we use the 
method of related tests.29 When implementing this 
technique we make use of certain simplifications, 
which, in their turn, use known spectral behaviors of 
the cloud optical parameters which in the final result 
enables us to make the calculations by this algorithm 
less laborious. The grounds for such simplifications 
are as follows:  

– normally, the extinction coefficient of clouds 
σλ has large magnitude and a neutral spectral 
behavior; therefore one may surely neglect the 
spectral variations in the spectral interval {0.7 –
 3.6 μm}; 

– among all the optical parameters the single 
scattering albedo is most sensitive to the wavelength 
variation. For that and some other reasons it is 
worth, in order to allow for its spectral behavior, 
calculating the values of wλ for a number of 
wavelengths thus providing a possibility of linearly 
interpolating it at any other wavelength λ. For 
reference wavelengths we have chosen those at which 
the real, m(λ), and imaginary, κ(λ), parts of the 
refractive index of water have local minima and 
maxima at a preset spectral resolution. We also 
include into the set of these reference wavelengths 

the wavelength points where the derivatives 
дm

дλ
 , 

дκ

дλ
 

experience a sharp increase or a decrease.30 Following 
these considerations we have chosen the wavelengths 
at 0.708, 0.760, 0.797, 0.917, 0.980, 1.070, 1.202, 
1.426, 1.613, 1.860, 1.875, 1.920, 2.005, 2.224, 
2.383, 2.503, 2.660, 2.634, 2.670, 2.706, 2.730, 
2.751, 2.798, 2.905, 3.096, 3.199, 3.266, 3.275, 
3.298, 3.309, 3.328, 3.340, 3.390, 3.440, 3.510, 
3.580, and 3.642 μm for our calculations; 

– the single scattering albedo in the spectral 
subinterval {0.7 – 2.7 μm} is high enough,  
wλ ≈ 0.9 – 1.0, and, as a result, the contribution 
coming from multiple light scattering is large. 
Therefore we may neglect spectral behavior of the 
cloud scattering phase function and take it to be a 
constant gλ = 0.706 µm(ω, ω′); 

– the single scattering albedo of cloud droplets 
in the spectral subinterval {2.7–3.6 μm} is not very 
high, wλ ≈ 0.5 – 0.8. For this reason only several 
first orders of multiple scattering will contribute to 
the mean radiation fluxes. Since these orders of 
multiple scattering are sensitive to variations in the 
scattering phase function we have calculated the 
values gλ(ω, ω′) in this spectral subinterval using a 
linear interpolation between the scattering phase 
function values calculated for the above reference 
wavelengths. In order to properly account for the 
spectral behavior of the scattering phase function we 
use special weighting factors. 

The model of the atmosphere and the algorithm 
used for calculating spectral fluxes of radiation, 

including analysis of its accuracy and efficiency (in 
the relation to computer time saving) have been 
considered in detail in Ref. 12. 
 

3. THE EFFECTIVE CLOUD FRACTION: 
DEFINITION AND SOME PROPERTIES 

 
Let us now give a mathematical definition of the 

effective cloud fraction and study its basic properties, 
which we shall use in the discussion below. Since we 
have homogeneous boundary conditions and assume 
the cloud field to be statistically homogeneous the 
mean radiation fluxes are the functions of only one 
coordinate z. 

The net radiation flux at the height z is as 
follows: 
 

Fi(z) = F
↓

i(z) $ F
↑

i(z) ,  i = clr, bc, pp,  (3) 
 

where F
↓(↑)
i  are the down and up going radiation 

fluxes. Here and below, when we deal with the 
broken clouds, by radiation fluxes we mean the 
fluxes averaged over an ensemble of cloud fields 
realization, while omitting the averaging sign for 
simplicity. As follows from the energy conservation 
law the absorption Ai(z1, z2) of light taking place in 
the layer (z1, z2) (see Fig.1) is  
 

Ai(z1, z2) = Fi(z2) $ Fi(z1) ,  i = clr, bc, pp.  (4) 
 

F
↑(z

2
)

F
↑(z

1
)

F
↓(z

1
)

F
↓(z

2
)

z
2

z
1

 
FIG. 1. Schematic representation of the up and 
down going radiation fluxes. 

 

The net radiation flux Fbc(z) may always be 
presented in the following form  
 

Fbc(z) = Ne(z) Fpp(z) + [1 $ Ne(z)] Fclr(z) .  (5) 
 

The function Ne(z) entering this expression 
allows for the 3-D effects in broken clouds and it is 
just this function that we shall call the effective 
cloud fraction. Generally speaking this function has 
no direct geometrical meaning. 

If we substitute the equality (3), written for 
each i = clr, bc, pp, into formula (5) and group 
separately the terms referring to the down and up 
going radiation then we have  
 

F
↓(↑)
bc (z) = Ne(z) F

↓(↑)
pp (z) + [1 $ Ne(z)] F

↓(↑)
clr (z) .  (6) 
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From formulas (5) and (6) we see the first 
property of the effective cloud fraction that one and 
the same value enters the expressions for net, down 
going and up going radiation fluxes at a height z. 

The formulas (3)–(6) work both for the spectral 
and integral fluxes of radiation. Below we shall deal 
with the integral fluxes in the visible (0.4–0.7 μm) 
and short-wave (0.4–3.6 μm) regions supplying these 
quantities with the superscripts “vis” and “sw”, 
respectively. Note also that all the radiation fluxes 
are in relative units. 
 

3.1. Dependence of the effective cloud fraction  
on height z 

 
According to expressions (5) and (6) we have 

that  
 

Ne(z) = 
Fbc(z) $ Fclr(z)

Fpp(z) $ Fclr(z)
 = 

F
↓(↑)
bc (z) $ F

↓(↑)
clr (z)

F
↓(↑)
pp (z) $ F

↓(↑)
clr (z)

 .  (7) 

 
Let us write down the first of the formulas (7) 

for the height level z1 and replace the functions 
Fi(z1), where  i = clr, bc, pp, by the relationships 
 
Fi(z1) = Fi(z2) $ Ai(z1, z2) ,  i = clr, bc, pp , 
 
which follow from Eq. (4). Then we obtain that  
 

Ne(z1) = 
Fbc(z1) $ Fclr(z1)

Fpp(z1) $ Fclr(z1)
 = 

= 
Fbc(z2) $ Fclr(z2) $ [Abc(z1, z2) $ Aclr(z1, z2)]

Fpp(z2) $ Fclr(z2) $ [App(z1, z2) $ Aclr(z1, z2)]
 .  (8) 

 
From expression (8) naturally follows the second 

property of the cloud fraction that it does not depend 
on z if no absorption occurs (Ai(z1, z2) = 0, 
i = clr, bc, pp), that is Ne(z1) = Ne(z2). However, in 
the presence of light absorption the equality 
Ne(z1) = Ne(z2) only holds when  
 
Fbc(z1) $ Fclr(z1)

Fpp(z1) $ Fclr(z1)
 = 

Fbc(z2) $ Fclr(z2)

Fpp(z2) $ Fclr(z2)
 = 

= 
Abc(z1, z2) $ Aclr(z1, z2)

App(z1, z2) $ Aclr(z1, z2)
 . 

 
We didn’t manage to prove the validity of this 

ratio in the general case, so we may not suppose the 
effective cloud fraction to be independent of z. 
 
3.2. Ratio between the effective cloud fractions in  

the visible and short-wave regions. 
 

The fluxes of short-wave radiation can be 
calculated by formulas (5) and (6) provided that  

N
sw

e (z) is known. One of the ways to calculate the 
effective cloud fraction is as follows: 

– first we calculate the quantities F
sw

bc , F
sw

clr, and 

F
sw

pp using a fine enough grid of the input parameters; 

– then we calculate, by formulas like Eq. (7), 

the values N
sw

e (z) and find simple formulas for 

interpolating the values N
sw

e (z) at the intermediate 
values of the parameters. 

A drawback of this approach is that it is time 
consuming because each set of the input parameters 
requires about 450 values of the calculated spectral 
fluxes. The computer time can essentially be reduced 

if the function N
sw

e  = f(N
vis

e ) is known, where the 

quantity N
vis

e (z) is defined similarly to N
sw

e (z), that is 
 

N
vis
e (z) = [Fvis

bc (z) $ Fvis
clr(z)] / [Fvis

pp(z) $ Fvis
clr(z)] .  (9) 

 

It is characteristic of the visible region that no 
absorption by cloud particles occurs while that by 
aerosol is insignificant. As a result the absorption 
itself and the differences [App(z1, z2) – Aclr(z1, z2)] and 
[Abc(z1, z2) – Aclr(z1, z2)] are negligibly small as 
compared to (Fpp(z2) – Fclr(z2)) and (Fbc(z2) – Fclr(z2)), 
respectively. Then, as it follows from Eq. (8) one can 

neglect the dependence of N
vis

e (z) upon z and assume 

that N
vis

e (z) = N
vis

e . 
Since the contribution coming from the radiative 

processes in the visible region to the radiation within 
the entire short-wave region is large enough and 
because the effects due to stochastic geometry of 
clouds do not depend on wavelength, one may 

suppose that the function N
sw

e (z) = f(z, N
vis

e ) could be 
quite simple and single valued. 

Figure 2 presents the effective cloud fraction  

N
sw

e (z) as a function of N
vis

e . Every point in this 
figure presents calculations made using a fixed set of 

the input parameters. The functions N
sw

e (z) and N
vis

e  
have been calculated for the up going (a) and down 
going (b) radiation at the level of the upper 
boundary of the atmosphere z = 16 km and at the 
level z = 0 of the underlying surface, respectively. 

In the case of cumulus clouds with the aspect 
ratio 0.5 ≤ γ ≤ 2.0 and 0.1 ≤ N ≤ 1.0 the dependence 

of Nsw
e (z) on Nvis

e  is well approximated by functions 
of the following view 
 

N
∼ sw

e (z) = Nvis
e  (1.06 $ 0.06 Nvis

e ) , 0 ≤ z ≤ Hb
cl , 

N
∼ sw

e (z) = Nvis
e  (0.98 + 0.02 Nvis

e ) , Ht
cl ≤ z ≤ H

t
atm ,(10) 

where N
∼ sw

e  is the approximate value of the effective 

cloud fraction. Significant differences between Nsw
e (z) 

and N
∼ sw

e (z) are observed at large values of the 
underlying surface albedo (As > 0.4). In these cases 
the values Fpp, Fclr and Fbc are close and the quantity 
is determined with large error. 

Let F
∼sw

bc  be the net fluxes calculated by formula 
(5), in which the value Nsw

e (z) is replaced by N
∼ sw

e (z), 

then 
 

F
∼ sw

bc(z) = N
∼ sw

e (z) Fsw
pp(z) + [1 $ N

∼ sw
e (z)] Fsw

clr(z).  (5′) 
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Let the accuracy of calculations of the net fluxes 
by formula (5′) be as follows 

ΔF
sw
bc(z) = 100% [F

∼ sw
bc(z) $ Fsw

bc(z)] /[Fsw
bc(z)] . 

 

Formulas of the type (5’) also apply to 
calculations of the up and down going short-wave 
radiation fluxes. 

 

 

0.0 0.2 0.4 0.6

-2

0

2

4

F
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↑, sw

0.0

0.2
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A
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s
w
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b
0.80.60.40.2
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↓,sw
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N
e

s
w

N
e

vis

z = 0

 

 

FIG. 2. The dependence of Nsw
e (z) on Nvis

e  and relative error ΔF
↓(↑),sw
bc (z) in calculations of the up going (a) 

and down going (b) radiation fluxes at the heights z = 16 km and z = 0. 
 

The data presented in Fig. 2 show that the values 

|ΔF
↓(↑),sw
bc (z)| do not exceed 3–4%. The same is true for 

except for very infrequent cases of |ΔF
sw
bc(z)| when it 

reaches 5–6%. It should be noted here that large errors 

in calculations of N
∼ sw

e  do not lead to correspondingly 
large errors in the short-wave radiation fluxes 
reconstructed, since at high values of the underlying 

surface albedo the quantities Fsw
bc(z), F

sw
pp(z) and Fsw

clr(z) 

(and correspondingly the values F
↓(↑),sw
bc (z), F

↓(↑),sw
pp  and 

F
↓(↑),sw
clr ) only slightly differ from each other, so that 

any of the values or may be taken for Fsw
bc(z). 

 

4. CLOUD FRACTION IN THE VISIBLE 
REGION 

 

Since now we have established the view of the 

function Nsw
e  = f(Nvis

e ) the task of calculating Nsw
e  

reduces to the determination of N
vis
e . Formulas for 

calculating Nvis
e  in regular array of clouds are presented 

in Refs. 6 and 7. However, the effects due to finite size 
of clouds like, in particular, multiple light scattering 
among clouds are nonlinear functions of the distance 
between the clouds. The question may be raised, in this 
connection, as to whether these formulas are applicable 
to cloud fields with the stochastic geometry of clouds. 
In order to answer this question, we show in Fig. 3 the 

data on Nvis
e  obtained using the model of a regular 

cloud field6 and the Poisson model of broken clouds. 

The comparison made in this figure shows that the 
neglect of the cloud stochastic geometry under 
conditions of large zenith angles of the Sun and 
low cloud fractions (N ≤ 0.4) can lead to both 
overestimation (by 10% at γ = 0.5) and 
underestimation (by 20% at γ = 2) of the up going 

radiation fluxes, F
↑,vis
bc . 

Thus we may summarize that the models which 
neglect the random geometry of broken clouds can 
result in large errors in the calculated mean 
radiation fluxes. 

Unfortunately, we have not managed to derive 

formulas for calculating Nvis
e  within the frameworks 

of the Poisson model of broken clouds. One of the 
possible ways to resolve this situation with the 
determination of the effective cloud fraction is to 
develop a numerical model. To achieve this task 
one should undertake the following steps: 

– to calculate the quantities Fvis
bc , Fvis

clr and Fvis
pp  

on a sufficiently dense grid with respect to every 
input parameter; 

– to calculate Nvis
e  by formula (9); 

– to derive interpolation formulas for 
calculating the effective cloud fraction at 
intermediate values of the input parameters. 

Time required for computing the numerical 

models of Nvis
e  is determined by the number of input 

parameters. In addition to the above mentioned 
parameters like the optical thickness of clouds τ, 
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cloud fraction N, aspect ratio γ, zenith angle of the 
Sun ξÁ, and albedo of the underlying surface As, the 

radiation properties of clouds also depend on the 
optical properties of aerosol and cloud microphysics. 
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FIG. 3. The effective cloud fraction in the visible region calculated using the Poisson model and the model 
of regularly distributed clouds6 at τ = 49 and single scattering albedo w = 0.999. 

 
TABLE II. Influence of the atmospheric aerosol optical thickness on the mean up and down going fluxes 
calculated using two sets of the input parameters: As = 0.0, γ = 2; the values τ, N, ξÁ are given in the Table;  
τ*a = 0.11. 
 

τ, N, ξÁ τ = 15;  N = 0.1;  ξÁ = 0° τ = 5;  N = 0.3;  ξÁ = 75° 

Fluxes F
↑,vis
bc (τa)/F

↑,vis
bc (τ*a), 

z = 1.5 km 

F
↓,vis
bc (τa)/F

↓,vis
bc (τ*a), 

z = 1 km 

F
↑,vis
bc (τa)/F

↑,vis
bc (τ*a), 

z = 1.5 km 

F
↓,vis
bc (τa)/F

↓,vis
bc (τ*a), 

z = 1 km 

τa = 0 0.032/0.033 0.968/0.967 0.32/0.31 0.68/0.69 

τa = 0.22 0.040/0.041 0.960/0.957 0.32/0.33 0.66/0.65 
 

Optical thickness τa of the atmospheric 
background aerosol is small as compared to the 
optical thickness of clouds (in our model 
τa = 0.11). Therefore it is admissible to neglect its 

variability and use some average value N
vis
e  when 

calculating τ*a $ Nvis
e (τ*a). Let F

↓(↑),vis
bc (τ*a, z) be the 

radiation fluxes calculated by formulas similar to 

formulas (6), in which the value N
vis
e (τa) is 

replaced by Nvis
e (τa). The calculational results given 

in Table II show that the difference between 

F
↓(↑),vis
bc (τa, z) and F

↓(↑),vis
bc (τ*a, z) is small at τa 

being between 0 and 0.22 and τ*a = 0.11. This 
clearly demonstrates the fact that relatively small 
variability of the atmospheric aerosol optical thickness 

may be ignored when making calculations of Nvis
e . 

Consider now the dependence of N
vis
e  on the 

microphysical properties of clouds. It is obvious that 

one should expect the highest sensitivity of N
vis
e  to 

the cloud microstructure variations at a low optical 
thickness of clouds. 

In Table III are presented the values of N
vis
e  

calculated at a constant τ using different scattering 
phase functions of clouds, like C1 cloud (mean cosine 

of the scattering angle $μ1 = 0.86), C3 ($μ3 = 0.81), 

and C6 ($μ6 = 0.89) (see Ref. 19). The optical 
thickness of clouds in these calculations was taken to 
be the same for all cloud types. Since variations of 

N
vis
e  are small the variations of the mean radiation 

fluxes are insignificant (≈1–2%) and the effect of the 

microstructure variations on the value of N
vis
e  may 

also be neglected in calculations. 
 

TABLE III. Influence of the cloud microstructure 

on Nvis
e  at γ = 2, ξÁ = 0°, As = 0.0; the values τ and 

N are given in the Table. 
 

Cloud type τ = 5, N = 0.5 τ = 15, N = 0.1

C1 0.436 0.067 
C3 0.44 0.069 
C6 0.435 0.065 
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Thus we have just shown that the effective cloud 
fraction is a function of the five input parameters, τ, 
N, γ, ξÁ and As. The values of these parameters used 

when constructing the numerical model of Nvis
e  are as 

follows 
– cloud fraction N = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 

1.0; 
– aspect ratio γ = 0; 0.2; 0.4; 0.6; 0.8; 1.0; 1.5; 

2.0; 
– solar zenith angle ξÁ = 0; 20; 40; 60; 80°; 
– albedo of the underlying surface As = 0; 0.3; 

0.6; 0.9; 
– optical thickness of clouds τ = 5; 10; 15; 20; 40; 

60. 
This set of values of the input parameters makes 

up 4340 combinations. To make the storage and 
 

processing of the calculational data easier we have 

created a database. The values of N
vis

e  at intermediate 
values of the parameters N, γ, ξÁ, As, τ are then 
calculated using linear interpolation. The accuracy of 

N
vis

e  calculations by interpolation formulas is about 
3–4% in the entire range of the parameters variation. 

In Refs. 2, 31, and 32 one can find a thorough 

discussion of the dependence of F
↓(↑),vis
bc  and their 

partial derivatives on the optical and geometric 
parameters of clouds and upon the conditions of 
illumination as well as certain physical interpretation 
of the facts revealed. However, the results discussed 
in these papers have been obtained using only a 
limited set of the values of input parameters that 
describe only some basic regularities of the radiation 
transfer in broken clouds. 

 

 
FIG. 4. Illustration to the influence of the Sun zenith angle and cloud fraction on the value of Nvis

e  at γ = 2 
and τ = 15 and different values of the underlying surface albedo As = 0.0 (à) and As = 0.4 (b). 
 

  

 
FIG. 5. The dependence of N

vis

e  on the cloud fraction and aspect ratio γ at τ = 15 and ξÁ = 60° and As = 0.0 (a) 
and As = 0.4 (b). 



G.A. Titov and T.B. Zhuravleva Vol. 10,  No. 7 /July  1997/ Atmos. Oceanic Opt.  
 

 

445

 
FIG. 6. Illustration to the influence of the cloud optical thickness and cloud fraction on N

vis

e  at γ = 2, 
ξÁ = 60° and As = 0.0 (a) and As = 0.4 (b). 
 

Numerous calculations we have performed when 

developing the numerical model of N
vis

e  enable us to 
analyze the influence of each of the input parameters 
N, γ, ξÁ, As, τ on the radiation properties of broken 
clouds. For illustration, in Figs. 4 to 6 is shown the 

difference ΔNe = Nvis
e  – N, which is indicative of the 

distinctions between radiation fluxes in cumulus 
clouds (γ ≈ 1) and in equivalent stratus clouds 
(γ ≈ 0). By equivalence we mean that the clouds 
differ only by the aspect ratio, other parameters 
being the same. Symbols “+” and “–” in these figures 
denote the values obtained at ΔNe > 0 and ΔNe < 0, 
respectively. White regions in the figures correspond 
to the case when ΔNe is close to zero. 
 

5. CONCLUSIONS 

 
We have developed a new parametrization of the 

radiation regime of statistically homogeneous broken 
clouds whose basic feature is the use of effective 
cloud fraction Ne. Its basic properties are as follows: 
1) one and the same value of Ne is used for 
calculating net fluxes as well as for calculating the 
down going and up going fluxes; 2) in the case when 
absorption occurs in the atmosphere the effective 
cloud fraction is a function of height z while in the 
absence of atmospheric absorption the cloud fraction 
may be considered to be independent of height, 
Ne(z) = Ne = const. 

We have shown that quite a simple and single 
valued ratio exists between the cloud fraction values in 

the visible and short-wave spectral regions N
sw

e  = 

= f(N
vis

e ). It is also shown in this paper that: a) the 
neglect of the influence of the stochastic geometry of 
broken clouds can lead to a 10 to 20% error in 
calculations of the mean radiation fluxes; b) small 
variations of the atmospheric aerosol optical thickness 
(0 ≤ τa ≤ 0.22) and of the cloud microstructure may be 
neglected in the calculations discussed. 

The effects produced by large particles and those 
due to the phase composition of clouds need for 
further investigations. 

As to the advantages of the parametrization 
proposed it is worth mentioning that 

1. the use of such a parameter as the effective 
cloud fraction enables one to accurately account for 
the effects due to random geometry of clouds; 

2. the existence of a simple dependence N
sw

e  = 

= f(N
vis

e ) reduces the task of calculating the short-

wave radiation fluxes to calculations of N
vis

e ; 
3. the development of a numerical model for that 

does not require long computer time; 
4. there is no need in making serious changes 

into the GCMs radiation codes currently in use. 
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