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The methods of pattern recognition theory are applied to identification of 

lines in the molecular rovibrational spectra.  The method proposed is based on 

recogniting systems of spectral lines meeting the Ridberg-Rits combination rule and 

most close to those calculated using some estimates of rotational constants and 

transition moments.  The expert system was created for analysis of spectra of 

asymmetric top molecules.  This system can automatically seek and assign spectral 

lines.  It is based on the Watson effective vibrational Hamiltonian, the Pade-Borel 

approximation, generation functions, and allows for the resonance interactions.  To 

construct the decision rule during learning, the system uses the method of potential 

functions that allows the reconstruction of the decision rule to be done using 

learning sequence. 

 
INTRODUCTION 

 
This paper reports about the expert system 

developed in the Lab of Molecular Spectroscopy at IAO 
SB RAS.  This system makes the assignment of 
rovibrational spectral lines automatically. 

For a successful solution of the atmospheric optics 
problems, one needs to know spectral characteristics of 
the absorption spectral lines of atmospheric gases and 
pollutants, including their quantum identification.1  The 
use of spectroscopic data with wrong identification can 
cause misinterpretation of the results of atmospheric 
experiments.  For example, in Ref. 2 the anomalously 
large shift of H2O spectral line by air pressure was 
discovered.  This line lying at 13947.2608 cm$1 was 
assigned to the [624](301) ← [523](000) transition.  As 
recent analysis has shown, in fact this line a doublet, and 
so large shift was due to deformation of the sum contour 
at increasing pressure.3 It should be noted that 
misassignment of spectrum is rather frequent, especially 
in the cases with weak spectra. 

In this paper, line assignment is considered as a 
separate problem of molecular spectroscopy having 
certain specific features like:  recognition under 
condition that existing theoretical estimates of line 
position and intensity are not sufficiently accurate and 
measured spectral line parameters are noisy. In this 
paper, to solve this problem, we use well developed 
methods of the pattern recognition theory.  The 
necessity of solving the problems of such a type is 
rather obvious and is due to the following 
circumstances. 

The methods of line assignment in rovibrational 
(RV) spectra are based on general quantum-mechanics 

rules, but in practice they are determined by how the 
spectrum is complex.  Thus, in simple cases, for 
example in the fundamental absorption bands of 
heteronuclear diatomic molecules (HF, HCl, CO, etc.), 
when there are simple regularities in line position in P- 
and R- branches, lines can be assigned by their position 
relative to the band center without calculating energy 
levels.  In more complicated cases, for example in 
spectra of asymmetric top molecules, preliminary 
analysis of line positions and their relative intensities is 
required as well as the determination of stable (relative 
to small variations of spectroscopic constants) spectral 
elements.  As a consequence, energy levels and 
corresponding wave functions should be calculated. 

Different methods for assignment of lines in 
spectra of linear, symmetric top, asymmetric top, and 
spherical top molecules are described in Ref. 4. 

In high vibrational energy levels, when the energy 
of rotational-vibrational interaction, anharmonic 
constants become comparable with the vibrational 
energy, simple methods of line assignment following 
from the model of small vibrations prove to be 
inapplicable.  In spectra of high vibrational overtones, 
characteristic features (position of the strongest lines, 
series of doublets, etc.) may vary from band to band.  
In such cases, the methods of assignment become more 
complex, that in fact necessitates development of some 
general versatile methods for making the assignment. 

Another part of the problem under consideration is 
in the following.  Multiatomic molecules:  water vapor, 
methane, ozone, being of great importance in 
atmospheric studies have complex absorption spectra 
comprising thousands and even dozens of thousands 
lines.  Analysis of such spectra and line assignment is 
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too cumbersome, and as P. Jensen5 said œthe time 
needed for spectrum recording is negligibly small in 
comparison to the time for its theoretical analysis.B  In 
this connection, it becomes necessary to develop such 
means for automated processing, which would allow 
one to quickly and efficiently work with such spectra, 
assign spectra lines, solve inverse problems and compile 
data bases. 

In this paper we present an expert system that 
uses, in contrast to similar ones,6$9 the algorithms of 
pattern recognition theory13$15 and recognition learning 
that allows obtaining necessary flexibility of the system 
$ possibility to use different methods of assignment 
with the combination rules applied to analysis of both 
strong bands and weak, œsingleB lines corresponding to 
transitions to states with large values of angular 
momentum or lines of weak vibrational bands, for 
which the method of combination differences is 
inapplicable. 

 
2. QUALITATIVE CRITERIA FOR LINE 

ASSIGNMENT 

 
It should be noted that only ab initio calculations 

may give reliable line assignment.  However, at present 
ab initio calculations of line centers and intensities in 
RV spectra of multiatomic molecules are sufficiently 
accurate for line assignment by simple comparison with 
the observed characteristics. In the general case, the 
calculation using empirical functions of potential 
energy, molecular dipole moment, in its turn, also 
cannot be directly used for assignment, especially for 
lines corresponding to transitions to high-excited RV 
states, when errors in the line position prediction can 
reach several dozens cm$1.  Therefore the absence of 
accurate information must be compensated by using 
other methods of assignment along with the calculation. 

Such methods of assignment are based of search of 
characteristic peculiarities in spectrum, for example, 
doublet series with 1:3 intensity ratio (for water$type 
molecules), search of subbands (in symmetric top 
molecules), strong Q$ branches for linear molecules.4   

When considering the problem of assignment, 
general criteria of line assignment should be 
formulated. 

According to the Ridberg-Rits combination rule 
(as applied to RV spectra of multiatomic molecules), 
spectrum contains groups of lines corresponding to 
transitions from different initial states to the same final 
state.  Figure 1 shows, as an example, rotational energy 
levels of upper and lower vibrational states.  Thus, 
according to the combination rule, we have to find, in 
the spectrum, the system of lines, whose centers by 
pairs obey the relationship  

 

⏐⏐ ν e
n1

 $ ν e
n2
⏐$⏐νcfi1 $ νcfi2⏐⏐ ≤ Δνn1

 + Δνn2
, (1) 

 

where ν e
n1

, ν e
n2

, νcfi1, ν
c
fi2

, ν c
n2

 are the calculated and 

measured line centers; n1 and n2 are the line numbers; 

Δνn are measurement errors; i1 and i2 are the quantum 
numbers of the initial levels of the transitions f ← i1 
and f ← i2, respectively.  Here it is supposed that the 
energy of the initial levels (to be certain, we consider it 
as a ground vibrational state) is determined with higher 
accuracy than Δνn.  Note that the deferences in Eq. (1) 
are independent of errors in calculation of the upper 
levels. 
 

 
 

FIG. 1.  An example demonstrating the work of 

combinating rule. 
 

In Ref. 6 some general criteria were proposed that 
can be applied to RV line assignment.  The problem is 
to determine such parameters χ of the effective 
Hamiltonian and parameters μ of the effective operator 
of the dipole moment, such that for every calculated 

line with the calculated intensity S 

c
if > Slim a line can 

be found in the spectrum, such that 
 

⏐S 

c
if $ S 

e
n⏐< ΔS 

c
if $ ΔS 

e
n , (2) 

 

⏐νcif $ νcn⏐< Δνcif $ Δνcn. (3) 
 

The parameter Slim is determined by the device 
sensitivity threshold. 

This criterion supposes line assignment based on a 
set of accurate spectroscopic constants, and it is, in 
fact, natural to require the assignment to be done 
within the framework of a unified theoretical model. 

The process of obtaining the spectroscopic 
constants χ and μ is the iteration one.  First, using the 
initial approximation χ = χ0 and μ = μ0 the strongest 
lines are assigned, and the parameters χ and μ are 
adjusted by solving the inverse problem.  Then, using 
the adjusted parameters weaker lines are sought and the 
lines found are also used for further adjustment of the 
parameters, and so on.  The use of the inversion results 
is in most cases sufficiently reliable method to check 
the line assignment, because misassignment results in 
an abrupt increase of standard deviation in the 
parameter fitting and can be readily detected. 

 
3. THE PROBLEM OF PATTERN RECOGNITION 

 
The methods of pattern recognition theory were 

already applied to solving problems of gas analysis and 
molecular physics,10$12 for example, to determination 
of the molecular structure by analyzing IR absorption 
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spectra, vibrational-electronic spectra, EPR, NMR, and 
mass spectra.  It should be noted that the below 
methods and results of recognition theory are classic 
and widely applied to solution of statistical problems in 
cybernetics.  The description is necessary to give an 
idea about the implementation of this method in the 
form of a set of algorithms.  

Let the object to be assigned (in our case that can 
be separate lines, groups of lines forming characteristic 
structures in spectrum) has N characteristics, then each 
object will have its image in an N-dimensional space of 
description X. 

Let U be the space of solution, 
U = {u1, u2, u3, ... , um}, and Λ be the space of 
situations, Λ = {λ1, λ2, λ3, ... , λk}.  Formally, to solve 
the problem of pattern recognition theory (PRT) one 
must construct the mapping 

 
u(x) : X → U (4) 
 
the best in a certain sense .  The quality criterion can 
be, for example, the minimum of Bayes risk, minimum 
difference between u(x) and the mapping u*(x) created 
by the tutor in the sense of some introduced distance 
between two functions, the minimum number of errors 
and the minimum error probability, etc. 

Depending on the quality criterion, different 
methods can be used (however, under certain 
conditions, different methods generate the same classes 
of procedures).  At least two different methods to PRT 
solution may be cited:  the probability approach 
(estimate of mutual probability density of the space of 
descriptions u  and the space of situations Λ) and the 
deterministic approach (reduction of PRT to the 
problem of construction of separating surfaces in the 
space of descriptions).  However, both these approaches 
lead to the same class of procedures.13 

It follows from the above definitions that 
construction of the decision rule is equivalent to 
construction of separating surfaces in the sign space 
that separate one class of objects from the other ones.  
For simplicity let us consider the case of two classes, 
with separating surface denoted as f(x). 

Let f*(x) be the function to be sought, which 
defines the separating surface.  In the training process 
let us seek f(x) closest (in a certain sense) to f*(x). To 
do this one needs to introduce the corresponding 
distance functional. Wide enough class of functionals 
can be written in the  form  

 
J = MX{Q(f(x), f*(x))}, (5) 
 

where MX{f(x)} = 
⌡⌠

X
 

 

f(x) p(x) dx is the mathematical 

expectation, Q(x, y) is some function (for example, 

J = MX{(f(x) $ f*(x))2} will correspond to rms 
distance and so on). Let f*(x) be presented by the 
series 

f(x) = ∑
i=0

∞

 ci ψi(x) = f(x, c), (6) 

 
where ψi(x) is the complete set of orthogonal 
functions. Then PPR is reduced to finding the 
coefficients ci in the series (6). This problem is solved 
with the help of known stochastic approximation 
method by Robbins-Monro13,14: 

 
c[n + 1] = c[n] + H[n + 1]∇

c
Q{f(x[n + 1], c[n]), f*(x[n + 1])},  

  (7) 
 

where c[n] is the vector$column of ci coefficients 
obtained at the nth (previous) step of training. The 
elements of the diagonal H[n] matrix give steps value 
of the iterative procedure, x[n + 1] is the vector$
column of indicators attached to the n + 1th element of 
the training sequence, ∇

c
 is the gradient-vector on c-

parameters. The conditions and proofs of the procedure 
(7) convergence are presented in Refs. 13, 15.  

If Q(f(x, c), f*(x)) = (f(x, c) $ f*(x))2, then (7) 
can be presented as  

 

c[n + 1] = c[n] + γT[n + 1] × 
 

× 

⎝
⎛

⎠
⎞∑

i

 ci[n] ψi(x[n + 1]) $ f*(x[n + 1])  Ψ(x[n + 1]), (8) 

 

where Ψ(x[n + 1]) denotes vector$column composed 
from the ψi(x) basis functions calculated at x[n + 1] 
point; T stands for transposition. 

Equation (7) defines simple and general enough 
way for separating surface construction during the 
training process. It is obvious that such an approach 
can also be easily applied in the case when the objects 
to be recognized are from several classes.  Due to their 
simplicity and algorithm conveniences the stochastic  
approximation method procedures are very popular 
among specialists in the field of automation. They 
provide the possibility to use the separating function 
(6) and to correct its parameters, when necessary,  at 
every stage n using Eq. (7). 

The potential function method (PFM) is one of 
the methods applied to training problems for the 
separating surface construction (and for the distribution 
density evaluation also). This method's procedures 
belong to the Robbins-Monro14 class of extremization 
procedures. 

In the so called computer realization of the PFM 
approximation f(x) of the f*(x) function at the 
N + 1th step is taken as  

 

f [n + 1](x) = f [n](x) + γ [n + 1] K(x [n + 1], x), (9) 
 
where the potential function j(x, y) satisfies the 
following conditions: 

 

K(x, y) ≥ 0,   K(x, y) ≤ K(x, x), ∀x, y,  
 (10) 
K(x, y) < ∞,   K(x, y) = K(y, x) . 
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In Eq. (9) γ [n] are the numbers that determine 
the extent to which the separating surface changes 
during the training process, they can be called Bthe 
training dozesB. The training dozes should be chosen in 
accordance with the following rule: 

 

γ [n] = 

⎩
⎨
⎧

>

> 0,  if f [n](x) ≤ 0,  f*(x) > 0,
< 0,  if f [n](x) > 0,  f*(x) ≤ 0,

0,  in other case;
 (11) 

 

γ [n] = r(f(x), f*(x)), 
 
and r(x, y) is some function such that 
⏐r(x, y)⏐≤ A⏐x $ y⏐+ B, A and B are constants. 

It follows from Eq. (9) that the f [n](x) function 
(that means f (x) at the nth step of training) can be 
written in the form  

 

f [n](x) = ∑
i=1

n

 γ [i] K(x[i], x). (12) 

 
Let us take the K(x, y) as follows: 

 

K(x, y) = ∑
i=1

M

 λ2
i ψi(x) ψi(y), (13) 

 

where ψi(x), i = 1, ∞  is the set of orthonormal 

functions.  One can prove that such a function satisfies 
the above mentioned conditions (10)(see Ref. 13). Let 

us denote ϕi(x) = λi ψi(x), then f(x) = ∑
M

 ci ϕi(x). The 

procedure  
 

c[n + 1] = c[n] + γ [n + 1] Φ(x[n + 1]), (14) 
 
where γ [i] is the numerical sequence satisfying the 
conditions (11), is called the perceptron realization of 
the PFM. The PFM procedures extremize the 
functional 

 

J = Mx{f(x) [sign f(x) $ sign f*(x)]}. (15) 
 

It is also necessary to note that the above described 
methods work only if the hypothesis assuming that the 
patterns are compact is valid.  To say briefly, the idea of 
compact patterns presented in Ref. 15 denotes, that the 
separating surface sought should be smooth enough since 
only in this case one can manage with comparably small 
number of the terms in the series (6). 

The Rozenblatt's perceptron15 is one of the  
realizations of the PFM. The Rozenblatt perceptron 
uses, in the potential function methods terminology, 
the basis functions of the form: 

 

ϕi(x) = λi ψi(x) = sign 
⎣
⎡

⎦
⎤θ 

⎝
⎛

⎠
⎞∑

j

 aij xj  , (16) 

where θ(x) is some function, a
i
j are numerical 

coefficients. The orthogonality of this functions set is 
shown in Ref. 13. The training algorithm  
of the Rozenblatt's perceptron second layer  

uk = ∑
i

 μki ϕi(x), k = 1, K , where K is the number of 

classes, has the following: 
 

μk[n + 1] = μk[n] + Tk[n + 1] Φ(x[n + 1]). (17) 
 
Here μk[n] is μk coefficients vector obtained after the 
nth step of training, Φ(. ) is the basis functions vector 
at the x point, and Tk numbers are chosen in 
accordance with  the rule: 

 

Tk = 
⎩
⎨
⎧

>

   1,  if uk(x) ≤ 0,  x ∈ Uk

$ 1,  if uk(x) > 0,  x ∉ Uk

   0.
 (18) 

 

A more detailed description of the method may be 
found in Ref. 15. 

 
4. THE APPLICATION OF THE PATTERN 

RECOGNITION METHODS TO ANALYSIS  

OF SPECTRA 

 
As was already noted, whichever identification 

method is used, the comparison and evaluation are 
necessary of the observed and calculated spectral 
features. Usually several line sets can be found in the 
spectrum, similar to the sought one, and each of the 
variants is analyzed using some additional criteria. The 
only correct set is chosen by a spectroscopist using a 
number of indicators, i.e. definite combinations of the 
line characteristics (intensity correlation,  deviation  of 
the observed centers and intensities from  calculated 
ones; accuracy of the combination rule fulfillment in 
comparison with the measurements precision, and so on 
$ can serve as an example). Such a problem is a typical 
one for the pattern recognition, that is why the well 
elaborated pattern recognition theory and mathematical 
statistics methods and algorithms can be naturally 
applied to the spectrum analysis automation. The 
application of the pattern recognition methods allows 
one to introduce quantitative criteria of the œanalogyB 
of the recognized spectral elements with some 
theoretical ideas, and, hence, to verify the assignment 
of lines. 

To apply the pattern recognition theory it is 
necessary to specify the objects (i.e. the characteristic 
features) to be recognized and their indicators.  The 
analysis shows that to make the line assignment it is 
necessary to use simultaneously the Ridberg-Ritz 
combination rule which is the only accurate one free of 
model ideas (molecular Hamiltonian, potential and 
dipole moment functions parameters and so on), along 
with the calculated lines characteristics (their positions  
and intensities). This provides reliability and generality 
of the recognition rules. At the same time other 
peculiarities which can be in the spectral doublets, 
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strongest lines, subbands, and so on, depend on the 
molecular type, rotational constants, accidental 
resonances and so on.  

Thus the pattern recognition problem reduces to 
the determination of the œsimilarityB of the observed 
and calculated characteristics within the array of lines 
satisfying approximately the combination rule. It is 
obvious that in order to obtain a flexible system the use 
of algorithms with  training to recognition is desirable 
in this case.    

Each line from the set under consideration has 
definite characteristics, for example, deviation  from 
the calculation on frequency, intensity,  accuracy of the 
combination rule fulfillment and so on. The following  
characteristics have been found to be expedient  as an 
indicators during the system creating process: 

1) deviation of the measured line frequency from 
the calculated one 

 

x0 = ln(1 + ⏐νe $ νc⏐k
0
0) k

1
0;  (19) 

 

2) deviation of the measured intensity from the 
calculated one 

 

x1 = ln(1 + ⏐s
e $ sc⏐k

0
1) k

1
1; (20) 

 

3) accuracy of the combination rule fulfillment  
for a given line 

 

x2 = ln(1 + ⏐E 

c $ E
$

 

e⏐k
0
2) k

1
2; (21) 

 

4) deviation of the measured line intensity from 
the calculated average (over the total set) one 

 

x3 = ln(1 + ⏐s
e $ S

$
 

c⏐k
0
3) k

1
3; (22) 

 

5) proportionality, on the average, of the measured 
and calculated line intensity 

 

x4 = 1 $ K{sc, se}, (23) 
 

where K{sc, se} is the coefficient of correlation between 
the calculated and found intensities for the set checked: 

K{x, y} = 

1
n
 ∑
i=1

n

 (xi $ x$) (yi $ y$)

1
n $ 1

 ∑
i=1

n

 (xi $ x$)2 
1

n $ 1
 ∑
i=1

n

 (yi $ y$)2

 ; 

 
6) the ratio of the summed intensity for all the 

lines found to the calculated total intensity 

x5 = ln
⎝
⎜
⎛

⎠
⎟
⎞

1 + ln 
⎝
⎜
⎛

⎠
⎟
⎞

 
Σs

e

Σs
c   k0

4  k1
4; (24) 

 

7) accuracy of the combination rule validity 
throughout the group. 

 

x6 = 
1

n $ 1
 ∑
i

 (E 

e
i $ E

$
 

e)2 × 1000. (25) 

 

The constants k
i
j are chosen so that the range of 

indicators change within the segment [$10; 10] 
containing the coordinate system origin. This provides 
the classes reflection being compact in the indicators 
space. The logarithms in Eqs. (19)$(25) were used in 
order to narrow the ranges of possible xn values. 

Training and checking indicators informative 
ability were carried out using H2O high resolution 
absorption spectrum in 1.4 μm region as an example 
with line identification being previously known.16 The 
indicators selection was made in turn using the ν1 + ν3 
strong band as an example. All indicators, but one, 

were dropped and by varying kj
i
 coefficients it was 

achieved that specificator indicated correct variants. 
The γ [n] values in Eq. (11) were taken in the 

form 
 

γ [n + 1] = 

⎩
⎨
⎧

>

+ r   if f(x, c) ≤ 0   and line is correct  
0

$ r   if f(x, c) > 0   and line is incorrect
 

   (26) 
 

r[n] = 0.2 f(x[n + 1]) + 1.0 ⋅ 10$7.  (27) 
 

(After submission of this paper new expressions 
have been derived instead of Eqs. (26) and (27) 
providing more stable work of the algorithm.) 

The basis functions in the vectors X = R7 space are 
the product of the form 

 

ψn(x) = 
i1+i2+...+i10≤3

Π

s=1.7$

ψis
(xs), (28) 

 

where ψi(x) = Ni exp {$ x
2/2} Hi(x); Hi(x) are 

Hermitian polynomials; Ni = 2i+1/i! are the 
normalizing factors.  The λi values in (13) were taken 
to be equal to 1. 

The Rozenblatt perceptron has also been tested in 
the expert system in addition to the above described 
realizations. The vector space χ was taken as the X-
description space having the form  

 

χ = (χ1
1, χ1

2, ... , χ1
20, χ2

1, χ2
2, ... , χ2

20, ... , χ6
1, χ6

2, ... , χ6
20),  

  (29) 
 

χij components, j = 1, 20  are calculated as follows: 

 

χij(x) = ⎩
⎨⎧

>

1   if xi ∈ [$ 10 + j; $ 10 + j + 1],
0   if xi ∉ [$ 10 + j; $ 10 + j + 1];

 (30) 

 

xi values are calculated using formulas (19)$(35). 
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In PFM terminology the basis functions were 
taken for a given case as 

 

ϕk(x) = sign 
⎣
⎢
⎡

⎦
⎥
⎤

 ∑
j=1

20

 ∑
i=1

6

 a
k
ij Θ[$10+j; $10+j+1](xi)  , (31) 

 

where k = 1, 120 ; Θ[a; b](x) is the indicator of the 

[a; b] segment, it equals to 1, if x ∈ [a; b], and equals 

to 0 in other cases; a
k
ij = δk(20i+j); δij is the Kronecker 

symbol. 
The transitions recognition operates as follows. At 

first  search is carried out of all lines satisfying the 
combination rule (1). The variants found are processed 
with the specificator that finds, and marks the correct 
ones; then the regime is switched on of the variants 
view, and the best one (containing line with the largest 
f(x) function value) is displayed on the screen. 

 
5.  EXPERT SYSTEM FOR ROVIBRATIONAL 

LINES ASSIGNMENT 

 
Using the above described methods expert system 

has been created providing spectra assignment in an 
automated and semiautomated regimes. The block$
diagram of the system is presented in Fig. 2.  

 

 
 

FIG. 2. Block$diagram of the expert system for 

rovibrational line assignment. 
 

The system contains the blocks for calculation of 
the energy levels, wave functions, line positions and 
intensities; the recognition and training block; special-
purpose databases; the blocks responsible for data bases 
correction and control.  Special initialization block 
contains the programs providing spectra and the 
necessary files preparation and control before running. 

The recognition blocks are adaptable that means 
that the built-in dialogue means between the system 
and a user makes it easy to make additional training of 
the system for a concrete spectrum or to train it anew 
during the work. 

The system can operate with molecules of different 
types (two cases of Cs and C2v symmetry are realized in 
the present version).  Watson-type effective 
Hamiltonian,17 Pade-Borel approximants,18 and 
generating functions method19 can be used for the 
energy levels, line frequencies and intensities 
calculations.  The maximum size of the analyzed 
spectrum is 32000 lines. 

The upper states Hamiltonian constants (the initial 
approximation), ground state and dipole moment 
parameters, and  analyzed spectrum,- are the initial 
data for the system operation.  

The results are accumulated in a special databases 
for the obtained experimental upper states levels and for 
the spectrum along with the assignment. There is a 
possibility of obtaining completed tables of 
œexperimentalB energy levels, and files containing centers, 
intensities, and quantum identification of the lines. 

The operation of the system is performed as 
follows.  At the beginning of the work with the help of 
the initialization program a user sets the names of files 
containing the spectrum (line frequencies and 
intensities list), sets the model parameters of upper and 
lower states, dipole moment constants, names 
databases, identifies the molecule type, kind of the 
model used, the search mode, and indicates some 
conditions of the experiment. Then it is possible to 
enter the spectrum analysis regime.  At first,  
rovibrational state to work with is fixed. Then the user 
can switch on the line search using lower state energy 
levels either calculated or experimental. 

In the case when at least one of the combination 
difference variants is found the variants view regime 
starts and the best variant (if the system is trained) is 
placed on the screen as a set of quantum numbers, 
lower state energy levels, calculated and experimental 
frequencies and intensities, upper state experimental 
energy levels appearing as a sum of lower state energy 
and measured line positions.  In this mode of operation 
it is possible to view, correct, add or drop the found 
lines assignments, include in or exclude form the energy 
levels database the upper state experimental energy 
level value obtained as an average for all lines marked 
by the user. Each line can have up to three 
assignments. 

If none variant is found, the regime starts of the 
nearest line view, where it is possible to identify a 
single lines.  In this regime there it is also possible to 
work with the databases like in the combination 
differences view mode. Both modes allow the spectrum 
view to be performed in succession.  Regime of the 
successive viewing of spectrum also allows the work 
with databases. After returning from the view modes it 
is possible to choose another rovibrational state and to 
continue the work, or to call the initialization program 
(mentioned above) and to choose the search regime; to 
view the databases contents with the results, and to 
place their contents into a text file in the form of 
tables. It is possible also to switch on the automatic 
mode, beginning from the current state and up to some 
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other state, using different regimes for isolated lines 
search (drop, analyze, or address to a user). 

This system has been used for line identification of 
HDO, D2O, H2O, H2

18O absorption spectra. 
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