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We propose a unified approach to the description of models for 

polydispersions of two-layer aerosol particles to calculate their optical properties. 

Some concrete models of the polydispersions of two-layer particles are discussed 

assuming basic physical processes causing their formation in the atmosphere.  
 

1. INTRODUCTION 

 

In real atmosphere there occur conditions favorable 
for the formation of polydispersions of heterogeneous 
particles.  Among those there are the moistened, aqueous, 
and ice particles; the soot-coated particles; the sulfuric 
acid and sulfate particles with a solid cover; the sulfuric 
acid particles possessing an outer cover formed of small 
adsorbed particles or a film formed due to the surface 
chemical and photochemical processes, as well as the 
hollow microspheres of the volcanic origin. All these 
systems and their optical properties can be described in 
terms of polydisperse ensembles of two-layer spheres.  

Calculations of the optical characteristics for model 
sets of homogeneous spherical particles are thought to be 
a routine procedure. At the same time, there are only few 
algorithms for two-layer spherical particles developed for 
some particular problems: e.g., moistening of particles1 
and stratospheric sulfate particles.2 The Ref. 3 presents a 
detailed review of such algorithms. The complexity of the 
above mentioned calculations is on the hand due to 
restrictions concerning the radius and the imaginary part 
of the complex refractive index (hereafter CRI) of a 
single spherical particle cover4 and due to a too detailed 
physical models of the two-layer particles formation, on 
the other hand.  

Earlier5 we have developed an algorithm  allowing 
one to overcome these restrictions in practical calculations 
of the two-layer sphere optical characteristics. The 
description of a set of the two-layer particles using the 
results obtained for a single particle, needs a 
mathematical model of such an ensemble. First of all, let 
us note that the mass calculations for ensembles of 
homogeneous spheres became realistic due to existence of 
a œstandardB set of such models, namely, the size 
distribution functions for the aerosol particles (see, for 
example, Ref. 6). Taking this into account, one can 
conclude that mathematical models for ensembles of two-
layer particles, good for unifying calculations of their 
optical characteristics, must meet the following two 
principal requirements: 

1) the transition from a model ensemble of 
homogeneous particles to one for ensemble of two-layer 
particles must involve a minimum number of additional 

parameters; 
2) the algorithm of the integration over the 

ensemble of homogeneous particles, must apply without 
any principle modifications to ensembles of two-layer 
particles. 

The first requirement contradicts the physical 
principles of the formation and evolution of the two-
layer particles, however a rigorous and detailed 
description of such phenomena will lead to a 
complicated model operating involving a lot of 
unknown coefficients which can not be measured 
experimentally. The use of simple empirical or 
œintuitive-empiricalB models with a minimum number 
of parameters is preferable, since they do not involve 
much complicated calculations, and allow the statement 
and solution of the problem on model parameters 
retrieval by using experimental measurements, and, 
after that, one can discuss the reliability of a model and 
its modifications.  This approach has already been used 
for description of the moistening particles (see below). 
This paper is an attempt to apply it to other cases of 
the two-layer particles formation.  

 
2. METHOD OF CALCULATIONS 

 

The two-layer spherical particles with a 
homogeneous core and a cover are described using the 
following parameters: the outer radius r, the ratio g 
between the inner radius (radius of the core) and the 
outer radius of the sphere, CRI of the core, m1, and the 
CRI of the cover m2. In Ref. 5 one can find the 
algorithms for calculations of the optical characteristics 
of a single two-layer sphere, i.e., the extinction and 
scattering factors, scattering phase function or 
scattering phase matrix, the coefficients of the 
expansion of the scattering phase function in a power 
series over the Legendre polynomials. To compute the 
optical characteristics of a set of two-layer spheres, one 
must integrate corresponding characteristics for a single 
sphere over the geometrical parameters of an ensemble, 
i.e., over r and g weighted with the size distribution 
function (one needs to take into account the probable 
dependence of the core and cover CRI on r and g). The 
integrals can be easily derived from those for ensembles 



A.V. Vasil’ev and L.S. Ivlev Vol. 10,  No. 8 /August  1997/ Atmos. Oceanic Opt.  
 

535

of homogeneous particles. Since these expressions are 
known, let us make the computations for the average 
extinction cross section, as an example 

 

Ce = π 

⌡⌠

0

1
 

 

dg
⌡⌠

0

∞

 

 

dr r2 Qe (r, g, m1(r, g), m2(r, g)) F(r, g),  

  (1) 
 

where Qe is the extinction efficiency factor for a single 
particle; F(r, g) is size distribution function for an 
ensemble of two-layer particles.  

The practical calculations by Eq. (1) are rather 
complicated since it contains a double integral and two-
dimensional distribution function F(r, g). To facilitate 
calculations, one may adopt a generally accepted 
assumption3 that the physical processes, responsible for 
the two-layer particles formation, allow one to 
determine all the parameters of a particle in terms of its 
outer radius. In this case the double integral, Eq. (1); 
turns into a one-dimensional one with the size 
distribution function F(r).  

The following assumption is also widely accepted. 
Let us assume the distribution of two-layer particle 
cores to be independent of the cover parameters, i.e. 
the physical model of the two-layer particles formation 
assumes the absence of a cover (or the existence of the  
core distribution function which is a limit of the F(r) 

function while the thickness of cover tends to zero). 
Thus, if f(r) is the core distribution function, one can 
derive the desirable distribution function F(r) sought 
from f(r) by making its transformation described by a 
set of parameters of the cover formation model. This 
approach allows the use of œstandardB distribution 
functions f(r) for homogeneous particles.  

Let us assume the above discussed transformation 
process to be described by the linear dependence of the 
two-layer particle outer radius 

 

r = q1(p1, p2, ... , pn) rc + q2(p1, p2, ... , pn), (2) 
 

where q1 and q2 are functions of the parameters of the 
cover formation model p1, p2, ... , pn (hereafter, this 
list will be omitted in formulas); rc is the core radius. 
One can obtain F(r) = f(r/q1 $ q2/q1), by making a 
formal assumption that F(r) = 0 if  
r/q1 $ q2/q1 ≤ 0.  Some particular models of q1 and q2 
functions will be given below.  

Let us introduce similar functions for modeling the 
relative size of the core g and the CRI of the core and 
the cover: 

 

g = q3(r),   m1 = q4(r, mc, ms),   m2 = q5(r, mc, ms), 
 

where mc is the CRI of the core substance and ms is the 
CRI of the cover substance. Then one can write Eq. (1) 
in the form 
 

Ce = π
⌡⌠

0

∞

 

 

r2Qe(r, q3(r), q4(r, mc, ms), q5(r, mc, ms)) f(r/q1 $ q2/q1) dr. 

 
Thus the problem of describing ensembles of two-

layer particles reduces to a creation of a set of five 
functions q1 $ q5 dependent on the model parameters.  

Let us check up the validity of the second 
requirement. The calculation of a two-layer particle 
parameters in terms of functions q3, q4, q5 as well as 
the use of Eq. (2) in the distribution function does not 
change the integration algorithm. At the same time, one 
can face some problems while computing the moments 
of the function F(r): 

 

Mi(F) = 
⌡⌠

0

∞

 

 

ri F(r) dr, 

 
used in the algorithm described in Ref. 6. B ut the 
integration with the use of Eq. (2) is elementary and 
results in 

 
C(F) = q1 C(f),   
 

Mi(F) = qi
2 + ∑

j=1

i

 C
j
i q

j
1 Mj(f) q

i$j
2 ,  i ≥ 1, 

 

where C(F) and C(f) are zeroth moments of non-

normalized distributions; C
j
i are binomial coefficients; 

Mj(f) are the moments of the œstandardB normalized 
function f(r) (see Ref. 6).  

Let us present the sets of characteristics of the 
ensembles of two-layer particles as well as examples of 
model calculations for these ensembles. The values of 
the CRI for substances forming cores and covers were 
taken Ref. 1.  

 

3. MOISTENED PARTICLES 

 

The Kasten formula7 (modified by Hanel8) is used 
to relate the radius r of a moistened particle to that of 
the core, rc  

 

r/rc = (1 $ u)$P lg(1$u)$Q, (3) 
 

where u is the relative humidity of air; P and Q are 
empirical constants, the recommended values of which 
are: P = 0.0664, Q = 0.113 for continental aerosol and 
P = 0.0498, Q = 0.173 for œa meanB aerosol.  

Equation (3) is valid for u < 0.95.  At high values 
of the humidity there occurs the growth of the  
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water drops.  To make the algorithm (3) versatile, let 
us describe the process of growth by a functional 
dependence with the properties providing: (i) 
continuity at u = 0.95 and (ii) the average radius of the 
water drops to be equal to a preset value R: 

 

r/rc = (1 + d $ u)(lgR $ lgM1(f))/lgd, (4) 
 
where d is a root of the equation 

 

(0.05 + d)(lgR $ lgM1(f))/lgd = (0.05)$P lg(0.05)$Q, (5) 
 
which can easily be resolved by the method of dividing 
interval 0 < d < 1 into halves.  

The following circumstance should be taken into 
account in this model. At big volumes of the cover and 
the density of non-soluble core being less than that of 
the water, destruction of a core may occur and 
fragments may come to surface of the drop cover (this 
assumption is confirmed by the electronic microscope 
images of  soot particles in a water drop). For this 
reason, let us introduce the value G as a critical value 
of the parameter g. The cores collapse at g = G (G < 0 
for non-destructive cores).  

Thus, one has the following model for particles 
with a non-soluble moistened core: q1 = r/rc is derived 
from Eqs. (3)$(5); q2 = 0. If 1/q1 > G, than 
q3 = 1/q1, q4 = mc, q5 = ms. If 1/q1 ≤ G, than 

q3 = (1 $ 1/q3
1)

1/3, q4 = ms, q5 = mc. 
For particles with a soluble moistened core, one 

again needs to use Eqs. (3)$(5) for correlating the 
outer and core radii of a particle. B y introducing a 
dissolution coefficient, one can obtain a radius of the 
core remained after the dissolution process in terms of 
the masses of core and cover. Unfortunately, such a 
detailed approach requires a lot of additional 
parameters to be introduced: i.e., the core and cover 
densities; dependence of the solution density on the 
amount of the dissolved substance, etc. It does not meet 
our first requirement. Taking into account the lack of 
information on chemical composition of the atmospheric 
aerosol as well as the approximate assumptions used in 
the aerosol models, let us simplify the description of 
the œvolumeB parameters of the dissolution model. Let 
us introduce a parameter D, the ratio of the core 
substance volume converted into the saturated solution 
to the total solution volume (i.e., 0 ≤ D ≤1). Since 
similar parameter will be used not only for the 
dissolution process description, let us refer to it as to a 
œcoefficient of penetrationB of the core substance into 
that of the cover. Within the frameworks of this 
œidealizedB model, one can assume the solution volume 
to be equal to the sum of volumes of substances 
forming it. The CRI of the solutions and mixtures will 
be calculated as an average volume weighted value.  

The above mentioned assumptions result in a 
model that allows for a possibility of total dissolving of 
the core: for q1 see the above expressions, q2 = 0. One 

calculates that Δ = (1 $ 1/q3
1 D)/(1 $ D). Than, 

Δ > 0 (only a core remains), q3 = Δ1/3/q1, q4 = mc, 
q5 = Dmc + (1 $ D)ms If Δ ≤ 0 (total dissolving), 

q3 = 0, q4 = q5 = mc/q3
1 + (1 $ 1/q3

1) ms. Note that 
there are two important particular cases of the model.  
One has the above considered case of a non-soluble and 
non-destructive core (at D = 0); at D = 1, one has 
always the case of total dissolving, i.e. a homogeneous 
particle with the average weighted CRI, this is the 
model in the approximation of a homogeneous mixture.  

The computations for moistened particles are 
illustrated with data in Fig. 1. The solid curve 1 shows 
the dependence of the average absorption cross section 
at the wavelength 0.5 μm for a model of moistened soot 
particles on the air humidity. 

 

 
 

FIG. 1. Dependence of the mean absorption cross 
section of moistened particles on the relative humidity: 
1) soot particles: solid line corresponds to the 
destructive core, dotted line corresponds to non-
destructive core; 2) organic particles: solid line $ two-
layer structure, dotted line $ homogeneous mixture 
approximation. 

 

The model with non-soluble, non-destructive core 
is characterized by the following parameters: the 
lognormal distribution of the core radii 

 

f(r) = 1/(rσ 2π) exp ([ln2(r/r0)]/(2σ2)) (6) 
 

where r0 = 0.01 μm and σ = 0.7; mc = 1.82 $ i0.74, 

ms = 1.33 $ i10$9, P = 0.0498, Q = 0.173, G = 0.8, 
R = 20 μm. The results calculated for the same model, 
but without the account of the destruction of the core 
(G = $1), are shown, for a comparison by the dotted 
curve 1. As seen from the figure the account for the 
possibility of the core destruction does not considerably 
influence the value of the aerosol absorption, so one 
can recommend to use a traditional model with a non-
destructive core.  

Another one example of the results of 
computations of the dependence of the air humidity on 
the average aerosol absorption cross section at the 
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wavelength 0.5 μm for moistened organic particles (soil 
aerosols) are shown in Fig. 1 (curves 2). The model 
with a soluble core was used.  Its parameters are as 
follows: the lognormal distribution of cores (Eq. 6) 
with r0 = 0.1 μm and σ = 0.9; mc = 1.45 $ i0.001, 

ms = 1.33 $ i10$9, P = 0.0498, Q = 0.173, D = 0.5, 
R = 20 μm. Results for the model just mentioned are 
depicted by solid curve whereas the results for the same 
model in the approximation of a homogeneous mixture 
(D = 1) are depicted by dotted curve (we use them for 
a comparison). The analysis of this figure shows that 
the model of a homogeneous mixture results in quite a 
different picture even for a readily soluble core, and, 
therefore, the account for the two-layer structure is 
really needed for a more reliable modeling of the 
atmospheric aerosol optical properties.  

 

4. STRATOSPHERIC SULFURIC ACID 

PARTICLES 

 

The processes of formation and growth of these 
aerosol particles are yet poorly studied and they are a 
subject of discussions.9 The heterogeneous 
heteromolecular nucleation, i.e. the formation of 75% 
sulfuric acid cover around the cores, soluble or non-
soluble in the sulfuric acid, is considered to be a 
mechanism of these particles formation. There exists an 
evident and experimentally tested correlation between 
the radii of the sulfuric acid particles and the 
atmospheric concentration of the sulfurous gas. Since 
the mechanism of the H2SO4 cover growth is similar to 
that due to moistening of particles, one can use the 
model of the particles transformation (2) with the 
following parameters: q2 = 0, the function q1 must 
increase at the SO2 concentration increase in case of a 
stationary dynamic balance of the SO2 concentration 
(constant flux) or for the same moment in time after 
the beginning of the SO2 emission due to a volcanic 
eruption.  

Analysis of the approximation of experimental 
measurements and the model computations9,10 allow 
one to assume a simple dependence describing q1: 
q1 = 1 + CQ, where Q is the SO2 concentration  (in 
cm$3), C is the empirical constant characterizing the 
rate of the SO2 oxidation process into the SO3. One 

can estimate that C ≈ 10$7 cm3. The functions q3 $ q5 
may be set to be the same, as those used in the 
moistening case: the model for a soluble core with the 
account for the limiting case of D = 0 for non-soluble 
cores.  

The dependence of the average value of the aerosol 
scattering cross section at the wavelength 0.5 μm on 
the SO2 concentration (for silicate cores with the 
sulfuric acid cover) is shown in Fig. 2. We used the 
inverse gamma distribution for the core size distribution 

function f(r) = Ar$1$aexp($r0/r), where A is the 
normalizing factor (see Ref. 6), and the parameters 
a = 5, r0 = 0.01 μm were taken from Ref. 2.  
 

The CRI values mc = 1.48 $ i2.5 ⋅ 10$4, ms = 1.43 $ 

i10$8; the core is non-soluble, i.e. D = 0. The dotted 
line depicts the computation results obtained using the 
same model, but for homogeneous sulfuric acid 
particles.  Figure 2 demonstrates the importance of the 
account for the internal structure of particles, 
especially for small particles (background models of the 
stratospheric aerosol). 

 

 
 

FIG. 2. Dependence of the average scattering cross 
section for an ensemble of sulfuric acid stratospheric 
aerosols on the SO2 concentration: the solid curve is 
for the -two layer particles; the dotted curve is for 
homogeneous particles.  

 
5. PARTICLES WITH THE ADSORBED COVER 

 

There are a number of processes which can be 
described using the two-layer particles model, for 
example, the coating of the stratospheric sulfuric acid 
aerosol by a mineral substance, the interaction of soot 
particles with the cloud drops, the coating of the 
aerosol particles by salts over the seas and oceans. 
There may occur variants depending on a concrete 
substance of the core and cover (e.g., solid or liquid, 
soluble or non-soluble, etc.). However, a unified 
mathematical description good for all cases can be 
developed, if one uses models of two-layer spheres with 
a homogeneous core and cover.  

Let us assume that cores and particles adsorbed 
exist independently. Than, assuming the regular coating 
of the core with a cover substance, one obtains the 
following parameters of the particle radius growth: 

q1 = 1, q2 = 1/3 C R3/[M2(f)], where C is relative 
concentration of the adsorbed particles (i.e., the ratio 
of the number of the particles adsorbed to that of cores 
contained in a unit volume); R is the average radius of 
the adsorbed particles. Note that such a model causes a 
relative (œconditionalB) physical meaning of C and R. 
As in the case with the moistened particles, let us 
describe possible interaction (dissolution) of the core  
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and cover in terms of the œvolumeB approximation. Let 
us introduce two formal parameters: D1 $ the 
coefficient of penetration of the core substance into that 
of the cover, and D2 $ the coefficient of penetration of 
the cover substance into that of the core. In this case, 
by calculating the values v = 

= (1 $ q2/r)3, Δ = v/(1 $ D2) $ (1 $ v)D1/(1 $ D1), 
one obtains the following expressions: if 0 < Δ < 1, than 

q3 = Δ
1/3, q4 = (1 $ D2) mc + D2 ms, q5 = D1 mc + 

+ (1 $ D1) ms; if Δ ≤ 0 or Δ ≥ 1 (total dissolution), than 
q3 = 0, q4 = q5 = vmc + (1 $ v)ms.  

Let us consider the applications of the formal 
model proposed to concrete cases. For particles with a 
solid core and a liquid cover, one has: D2 = 0, D1 > 0 
for soluble core and D1 = 0 for non-soluble one. As to 
the particles possessing both a liquid core and a 
liquid cover, one uses an œapproximation of mixingB, 
i.e. the coefficient of penetration of the core 
substance into the cover is assumed to be equal to the 
coefficient of penetration of the cover substance into 
the core (D1 = D2 = D). The case of D = 0 
corresponds to a non-interacting core and cover. In 
case of particles with a solid core and a solid cover, 
the cover is formed as separate elements on the core 
periphery. Let us assume the regular distribution of 
the cover substance on the core surface to be uniform, 
and use the approximation of mixing of a part of the 
core substance and the whole cover to account for the 
presence of separate elements. Than one has: D2 = 0 
and D1 is the parameter determining the mixing 
degree (the higher the value of D1, the thicker is the 
cover, but its CRI is more close to the CRI of the 
core).  Finally, it is necessary to take into account a 
possibility of the cover dissolution in the core. This is 
the general case requiring both D1 and D2 to be set a 
priori. 

To illustrate this model, let us consider the 
interaction of soot particles with the cloud drops. The 
latter is described by Khrigian-Mazin distribution 

f(r) = Ar2exp($br), where A is the normalizing factor 
(see Ref. 6), b = 0.03 μm$1. The mc and ms values for 
water and soot are listed above, R =0.05 μm, D2 = 0. 

Figure 3 illustrates the dependence of the single 
scattering albedo of a cloud (i.e., the ratio of the 
average scattering cross section to the extinction one) 
at the wavelength 0.5 μm on the relative 
concentration C of soot. Four values of D1 (1 $ 0; 
2 $ 0.1; 3 $ 0.3; 4 $ 0.5) were used. The analysis of 
Fig. 3 shows that the decrease of the albedo value 
down to 0.999$0.990 (i.e. when one can observe light 
absorption in clouds) requires an enormous quantity 
of soot (tens thousand than soot particles per a water 
drop, i.e. no less than 10 mg/m3). This confirms the 
impossibility of explanation of the anomalously high 
absorption in the stratus clouds11 within the 
frameworks of the model computations of their 
optical properties.12  

 

 
FIG. 3.  

 
6. PARTICLES WITH A CONSTANT THICKNESS 

COVER 

 
Some physical processes have to lead to the 

formation of two-layer particles with a constant 
thickness cover. For example: thin films formed due to 
chemical (photochemical) reactions on the particle 
surface, or hollow particles (œbubblesB) formed due to 
the evaporation and sprinkling of the volcanic lava. 
The above mentioned particles are described by the 
model parameters: q1 = 1, q2 = B, q3 = 1 $ B/r, 
q4 = mc, q5 = ms, where B is the cover thickness.  

 

 
 

FIG. 4. Spectral dependence of the average extinction 
cross section for an ensemble of hollow particles: for 
the cover thickness 0.1 μm (curve 1); for the cover 
thickness 0.5 μm (curve 2). 

 

An example of two computations of the spectral 
dependence of the aerosol extinction cross section in the 
visible for hollow particles at B = 0.1 and 0.5 μm  
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is shown in Fig. 4. The lognormal distribution, Eq. (6), 
with r0 = 0.5 μm, σ = 0.9 was used for the core size 
distribution function. The parameters mc = 1 (gas), and 
ms correspond to the spectral curve for silicates taken 
from Ref. 1. According to Fig. 4, there are no 
anomalies in the spectral dependence of the extinction 
cross section, caused by the interference in the cover,5 
for particles with a thin cover. On the other hand, 
explicit anomalies are seen for particles possessing the 
cover thickness comparable with the wavelength. 
However, taking into account that the fraction of 
hollow volcanic particles is negligible compared to the 
whole atmospheric aerosol, it is doubtful that one can 
detect such anomalies from the spectral transparency 
measurements.  

 

7. HOMOGENEOUS PARTICLES. 

 

It is obvious that homogeneous particles can be 
considered as a particular case of the developed 
approach to the integration over ensembles of two-layer 
particles with the parameters: q1 = 1, q2 = 0, q3 = 0, 
q4 = q5 = mc. This means a good possibility of applying 
the codes developed for the integration over ensembles 
of two-layer particles to computations of the parameters 
of the ensembles of homogeneous spheres.  

 

8. CONCLUSION 

 

The approach proposed for computation of optical 
parameters of the ensembles of two-layer spherical 
particles allows one to pass from the routine 
calculations for ensembles of homogeneous spheres to 
the routine programs for two-layer spheres. This will 
allow one to develop more reliable optical models of 
the atmospheric aerosol since there are a number of 

important phenomena which can not be described using 
spheres models of homogeneous sphere. 
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