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In this paper we propose certain criteria to characterize the efficiency of sea 
disturbances recognition using airborne laser sounding. To calculate the magnitudes 
of disturbances in a gradient and spectral representations, we use logical 
procedures.  The image recognition algorithm based on potential functions (kernel 
estimations) method with the control of class representation adequacy is treated. 
The results of the disturbances recognition in a real sea obtained by the algorithm 
are presented. 

 

A variety of hydrophysical processes in sea 
medium, wide range of their spatial and temporal scales 
increase complexity to the problem on classifying these 
processes based on remote observations.  

The necessity of detecting and classifying 
hydrophysical processes is associated with the problem 
of monitoring the ocean when solving different 
scientific and applied problems.  

Evolution of a hydrophysical process in the sea 
medium is accompanied by the medium disturbances 
that manifest themselves in an increase variability of 
the hydrophysical parameters. The signs of the 
disturbances have no any general forms and depend on 
a variety of factors. 

Information on the disturbance parameters may be 
extracted from the backscatter signals obtained at 
sounding the sea medium or sea surface by laser (see 
Ref. 1) or radar (see Ref. 2) and optical (using surface 
illumination) means (see Ref. 3). Since the variability 
of the sea waves is secondary as compared to the 
processes within the sea depth, one can expect to 
improve the recognition using signals of laser sounding 
in the range of œa transmission window” which bear 
information on the state of the region where the 
assumed hydrophysical process evolution free of 
immediate atmospheric action.  

As the research practice has demonstrated the layer 
with an increased concentration of scattering particles 
in the region of seasonal thermal wedge exhibiting fine 
structure is a good indicator of the disturbances. 
Therewith both the layer position in depth and its 
structure vary what has an immediate impact on the 
shape of the Mie backscatter of laser pulses.  

In the present paper detection of a desired 
perturbation class is associated with the image 
recognition in the form of multidimensional vector in 
the space of formalized signs. The algorithm proposed is 
based on the principles of image recognition theory 
(see, for instance, Ref. 4). The values of the criteria are 
calculated using logical procedures which incorporate 

the parameters of backscattered pulses (PBP). 
Therewith the gradient and spectral representations of 
the PBP have been used (see Refs. 5, 6).  

As far as we know, during the research present 
period (1988$1989) no consideration has been given to 
the problem on recognition of a hydrodynamic process 
images with the use of gradient and spectral parameters 
of airborne lidar return signals. 

 

1. RECOGNITION METHOD 
 

1.1. Basic scheme 
 

Let A = {xi}, i = 1, ... N be standard (training) set 
of criteria vectors from a known class, for instance, 
from the œbackground” one (œbackground” means 
unperturbed state of the medium). The image of a given 
class which is they used to construct the decision rule is 
reconstructed from this information. Therewith the 
control over the reconstruction adequacy is provided. 

The principle of reconstruction of the class K(`) 
from a given sample set A = {xi} in the space of criteria 
by the method of potential functions (kernel estimates) 
is that the concentration density function fk = (x) of 
points in Rn (n$dimensional Euclidean space) is 
approximated by the following expression: 

 

f ^k(x) = C ∑
i = 1

N

 
 1

hi
n ϕ ⎝

⎛
⎠
⎞xi $ x

hi
 , (1) 

 

where C is the normalized constant, for instance, 
q = 1/N; ϕ(x) is the kernel function of the smoothing 
window, for instance, 

 

ϕ(x) = exp⎝
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1
2
 ||x||
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 , (2) 

 

where ||⋅|| is the Euclidean norm in space Rn; {hi} is the 
appropriate system of smoothing window parameters. 

Function f ^k(x) (the image of OK(A) class) is 
taken as the measure of proximity of a point x to the 
class K(A) and is used to classify any given vector of 
criteria x. 
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1.2. Decorrelation and spheroidizing 
 

The use of round smoothing window given by 
Eq. (2) is justifiable only after application of the 
decorrelation and normalization procedures to the 
training set A. For this purpose all vectors from both 
sets, K and A, (the latter is to be recognized) are 
subject to the orthogonal transformation of 
decorrelation and spheroidizing. To avoid introduction 
of a new designation for coordinates x let us write this 
procedure in the form of the assignment operator 

 

x: = D$1/2o Šx, (3) 
 

Here decorrelation matrix o  is such that  
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(4)

The matrix columns are the orthogonal 
eigenvectors of the covariance matrix q`  of the set A, 
considered as a random vector sample with the matrix 
q` eigenvalues λ1, ....., λn.  

The spheroidizing transformation is performed by 
the matrix  
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(5)

 

The covariance matrix of the set A = {xi} after the 
transformation by Eq. (3) becomes a unit one (while 
the set inertia hyperellipsoid becomes a hypersphere). 

 

1.3. Optimal window system 
 

When constructing a measure of proximity in the 
form of Eq. (1) the following algorithm for choosing 
optimal window parameters hi was applied. For each 
point xi ∈ A one can define some value h which 
maximizes the proximity measure of the type expressed 
by Eq. (1) of the point xi to the set ` $ n xi with the 
parameter h being independent of the summation index. 
Here n xi is a small vicinity around the point xi   
 

including, probably, only one point from the set A, 
namely, xi. This value h is calculated as a solution to 
the following equation: 

 

d
dh

 p(xi, A$Oxi, h) = 0, (6) 

 

where !(⋅) is the proximity measure with the constant 
parameter h: 

 

p(xi, A$Oxi, h) = 
C
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Here p(xi, A$Oxi, h) → 0 both at h → 0 and h → ∞. 
This means that this function has its peak on the half-
axis (0, ∞). Upon a simplification Eq. (6) reduces to 
the form 
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As a rule the iterative process  
 

hk+1
2

 = f(hk
2
), (9) 

 

rapidly converges to some value hi
∗ which provides for 

max
h

 p(xi, A$Oxi, h). The distance from xi to the 

nearest point from the set A can be taken as the initial 
approximation h0.  

It is obvious that maximizing of the sum expressed 
by Eq. (7) is primarily achieved owing to those terms 
which correspond to the point xj being the nearest to xi 
one (except for œexcessively close” points). This means 

that hi
∗ is the local-optimal window parameter for the 

vicinity around the point xi. Besides, this provides a 
basis for accepting and experimental investigation of 
the following proximity measure with the system of 
windows optimal in the above sense:  
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The estimation of the radius ρ
δ in the vicinity Oxi 

based on the approximate value of the density of points 
in the normal array can be written in the form: 
 

ρ
δ
 = 

1.2 σ n

n
N

 ≅ 
1.2 rmean

n
N

 , (11) 

 

where rmean ≅ M(⏐⏐ x⏐⏐  )2 = σ n is the mean radius of 
the normal sampling considered including N points 
from the set A ∈ Rn. 
 

1.4. Determination of the class boundary 
 

For the 3-digit answer in the decisive rules of 
recognition of arbitrary sign point to be obtained it is 
necessary to determine the boundary or boundary strip 
(œΔœ$boundary) of the class K(`). Let the set Γ(A) 

 



E.V. Zubkov et al. Vol. 10,  No. 9 /September  1997/ Atmos. Oceanic Opt.  
 

 

687

Γ(A) = {x ∈ 

Rn, popt(x, A) = α max
i

 popt(xi, A))} , (12) 

 

where 0 < α < 1 be called the boundary of the class 
K(`). 

The value α is a free parameter of the algorithm. 
From experience it follows that in most cases it is to be 
chosen from a priori information on possible values of 
the frequency of occurrence of anomalous formations, 
on the risk value of missing anomalies and so on rather 
than from mathematical reasons.  

 

1.5. Adequacy of the class representation 
 

The system of windows should provide the 
adequacy of approximation of the class K(`) by the 
function !(x, `, {hi}). The purpose of achieving the 
adequacy is to avoid the following two inadequacies in 
the class representation: 

a) identification of the class K(`) with the set 
itself if windows are excessively small (when each of 
the two sets becomes œabsolutely separable”); 

b) blooming of the class in the case of excessively 
large windows when all images of the classes are 
indistinguishable. 

There are several methods for estimating the 
adequacy. Almost all of them involve elements of a 
subjective choice and, therefore, it is essential to have 
an ensemble of independent methods for making the 
choice objective.  

1) The adequacy estimate by the method of 
random perturbation of a set.  For a given system of 
windows m = {h1, ..., hN} the following value (the 
measure of inadequacy of the first type) is determined: 
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where  
 
L(xi, A, H) = ln p(xi, A, H); (15) 
 

the set A is a œperturbed” set, where coordinate xi
k of 

the point xi is replaced by x
∼

i
k
 = xi

k
 + εi

k where εi
k
 is a 

random number with the Gaussian distribution having 

the parameters M(εi
k
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where lk = max
i

 xi
k
 $ min

i
 xi

k
. 

Let us consider the measure ν(m) as a function of 
some coefficient α 

 

ν(α) = ν(α h1
∗, ... α hN

∗ ), (17) 
 

where  α > 0, while {hi
∗} is a set of optimal windows. 

The approximation p(xi, A, m) of the class K(`) 
can be considered as optimal if it is constructed on the 

set of windows H = {h1
0
, ..., hN

0
} satisfying condition  

hi
0

 = αmin hi
∗, i = 1, ..., N, where αmin is the minimum 

value of α such that the condition ν(α) < εth is valid 
(εth is some inadequacy threshold, for instance, 
εth = 0.1).  

2) The criterion of the proximity measure 
convergence with increasing number of points in the set 
A. 

When the process of a set volume increase is 
considered, for the sequence of sets 
`1 ⊂ `2 ⊂ ... ⊂ `l ⊂ the convergence of any sequence 
of the proximity measure values should take place 

 

p(xi, A1, m), p(xi, A2, m), ..., p(xi, Al, m), ..., 
 

for each point xi ⊂ Ak, k = 1, 2, ..., if the system of 
windows H is free of inadequacy of the 1st type. The 
convergence is to be achieved for any random choice of 
the initial set A and any random addition of new points 
to the set.  

This method calls for further investigation in order 
to elaborate an algorithm for making decisions on the 
presence or absence of the convergence and for the 
determination of the indices of inadequacy of the 2nd 
type.  

3) Visual adequacy (quality of the class 
reconstruction on a selected set) estimate by an 
operator by constructing the plots of one- or two-
dimensional sections of the function p(x, A, m).  

Elements of all the above methods of estimating 
the background class representation adequacy are used 
when solving this problem. 

 

2. THE ARRAY OF CRITERIA USED 
 

2.1. Algorithms for calculating the criteria values 
 

The n-dimensional (n = 12) criteria vector 
constructed on the base of gradient and spectral 
representations of the backscattered signal has been 
used. The system of criteria allows for the dynamics of 
the process adapting to its phase known a priori. The 
algorithms for calculating the criteria values based on 
logical procedures are presented below (see 
Tables I, II). The following designations are used: n is 
the ordinal number of the criteria vector component; 
∇U is the depth gradient of the signal amplitude, 
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normalized to the initial amplitude of the backscattered 
pulse (BP)  

 
∇U(k) = [U(k + 1) $ U(k)]/U(1), (18) 
 
k = I, II, III, IV, V is the number of a fixed depth 
level (or time channel k = I, ..., K) when quantizing 
BP on the time scale; ti is the time measured from 
the beginning of the ith tack, performed with an 
airborne lidar during its flight along coincident tacks; 
i = 1, ..., (I $ 2), where I is the total number of 

coincident tacks; η$s is the spectral energy value in 
the sth frequency interval normalized to the overall 
energy of BP 

 

η$(s) = W(s)/W0, (19) 
 
where W(s) is the pulse energy in the sth frequency 
channel (s = 1, ..., S); ΔFs = ΔF/S = NΔf (operation 
frequency band ΔF = SΔFs = SNΔf = LΔf); Δf is the 
interval of spectrum quantization;  

W(s) = ∑
n = 1

N

 
 Ps(n) Δf, (20) 

 

where Ps(n) are the values of spectral power density in 
the frequency interval Fs $ Fs$1.  

The total pulse energy 

Wm = ∑
l = 1

L

 
 P(l) Δf. (21) 

 

f(B) is the truth value of Boolean expression B (see 
below); f(B) = 1 if B = true; f(B) = 0 if B = false. 

For the gradient criteria 1$4 (see Table I) the 

ordinal number n = k $ 1 (k > 0).  Values of ∇U
⎯

 and η$ 
are obtained as a result of averaging over a sample of 
sounding pulses. The criteria values are calculated for 
each triplet of coincident tacks. The criteria 1$4 are 
calculated for each pair of neighbour depth levels. The 
ordinal number of spectral criterion n = s + 4  
(s = 2, ..., 7). Its maximum value is equal to 4. 

 

 
TABLE I. 

The number of 
criterion (n) 

Calculation algorithm for the o n criterion 

Gradient criteria 
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TABLE II. 

The number  
of criterion 

Calculation algorithm for the o n criterion  

n = s + 4 Spectral criteria 
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3. FORMATION OF THE œBACKGROUND” AND 
œSIGNAL” SAMPLES 

 
œSignal” and œbackground” samples have been 

obtained in different water areas which differ 
essentially from each other in hydrological parameters. 
The œsignal” sample was formed when the airborne 
lidar flew in the regime of spatially coincident tacks, 
while the œbackground” one was obtained from the 
tacks forming a grid.  

Since random processes describing the behavior of 
hydrophysical parameters (HPP) are nonergodic and 
the correlation of HPP in vertical column significantly 
exceeds that in the plane (see Ref. 7), such a method of 
forming the œbackground” sample has obviously added 
complexity to the recognition conditions.  

Complete data file prepared included 60 œpoints” 
from the œsignal” (Ns) and 2800 œpoints” from  
the œbackground” (Nb) samples. By œpoint” is  
meant a definite spatial interval of the signal averaging. 

 
4. RECOGNITION RESULTS 

 
Several variants of the recognition problem has 

been calculated. According to the variant chosen 
œsignal” or œbackground” sample was used as the 
training one. The indicator files wherein each criteria 
vector (spatial point Rn) was classified as unrelated 
(œanomaly”) to or involved in the training set were 
printed out. In these cases the indicator value is equal 
to 1 or 3, respectively. The indicator value of 2 was 
assigned to the marginal points located on the training 
set boundary. When recognition is performed at the 
level of false alarms F = 0.1, points œ1” and œ2” are 
assigned to the œanomaly” set. If the false alarm level 
F = 0.05 the marginal points are not included into the 
œanomaly” region. 

When the œbackground” sample is used as the 
training one the results of œsignal” recognition show 
high frequency of correct classification (in the limit, 
the probability of true detection). In some cases the 
results drastically change with the renewal of the 
œbackground” sample. The first situation demonstrates 
high efficiency of the selected criteria system, while the 
second one means that, as expected, the œbackground” 
situation similar to œsignal” one under conditions of 
high level of small-scale sea medium variability in the 
horizontal plane is quite probable.  

Besides it should be noticed that the criteria set 
selected provides stable results if the condition of 
stationarity of the random processes describing the 
behavior of sea medium parameters is fulfilled. 
Nevertheless, the same œpoint” can be simultaneously 
subjected to several hydrophysical processes of different 
scales. Therefore the best volume of a sample  
 

corresponds to the interval on which the quasi-
stationary approximation is valid. It is apparent that 
the volume can vary with water area and specific 
hydro- and meteorological conditions. In terms of the 
spatial scale the selection of 20 values of the criteria 
vectors is quite acceptable but inadequate for forming 
clear boundary of a set in a multidimensional criteria 
space. Nevertheless, an increase of the volume of 
training (in that case œbackground”) sample and 
removing from the boundaries of the quasi-stationary 
approximation region result in œblooming” of the 
boundaries of the training set including increased 
number of points from the œsignal” sample.  

The above reasoning is confirmed by Fig. 1. 
demonstrating the frequency of true classification of 
œsignal” sample (3×20 values of the criteria vector) 
versus training œbackground” one whose volume varies 
with a step of 20 values in the range from 20 to 300. 
Solid and dotted lines correspond to the false alarm 
level F = 0.1 and F = 0.05, respectively. 

 

 
 

FIG. 1. Results of recognition versus volume of the 

training œbackground” sample D = f(Nb). 
 

Another one variant of the problem is recognition 
of the overall œbackground” data array (2800 values) 
divided into segments calculated because of limitations 
in the computer operative memory. As it follows from 
Table III (two right columns) reliable separation 
(D = 0.75 at F = 0.1) of the representative 
œbackground” sample relative to the œsignal” set is 
evident.  
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TABLE III.  Recognition results. 
 

Segment Number of points D = N1/N D = (N1 + N2)/N

number N (total) N1 (œ1” anomaly) N2 (œ2” boundary) F = 0.05 F = 0.1 

4 320 189 29 0.59 0.68 
5 & 224 28 0.7 0.79 
6 & 226 18 0.71 0.76 
7 & 196 28 0.61 0.7 
8 & 256 23 0.8 0.87 
9 & 205 32 0.64 0.74 
10 & 185 53 0.58 0.74 
11 & 192 31 0.6 0.7 
12 240 169 18 0.7 0.78 

    D
#

  

∑ 2800 1842 260 0.66 0.75 

 
 

5. CONCLUSIONS 
 

1. The presented results of application of the 
image recognition theory to the problem on 
classification of hydrophysical processes using signals of 
laser sounding show that despite of the effects of 
multiple scattering along with the signal aberrations 
appearing in a double-path propagation of the laser 
pulse through the random water surface one may expect 
relatively correct recognition parameters.  

2. In the experiment variant considered the 12-
dimensional system of criteria used provided the 

frequency of correct recognition D
#

 = 0.75 at the false 
alarm level F = 0.1.  

3. The choice of spatiotemporal intervals for the 
criteria determination has a decisive role in the 
recognition problem by virtue of nonstationary behavior 
of the perturbations developing in a nonuniform sea 
medium.  

This work has been done in 1989$1991 based on 
the data obtained in the course of a collaborative 
experiment with the airborne lidar œSea-gull” 
performed by the Institute of Physics, USSR Academy 
of Sciences and CSPIP œKometa” in 1985 (see Refs. 1 
and 5).  
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