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The subject of this paper is formulation of the conditions under which a 

functional relation exists and keeps between the logarithm of wave function 

amplitude and its phase.  The dispersion relations, describing this relationship, are 

extended to two$dimensional case.  The interference pattern and real zeroes of a 

light wave in an inhomogeneous medium are studied to demonstrate the approach 

application. 
 

1. INTRODUCTION 

 

If an analytical function G(x) has no zeroes, and 
its logarithm singular points in the upper half$plane of 
the complex variable ζ = x + iη, η ≥ 0, then there 
exists a relation between χ(x) = Re ln G(x) and 
ϕ(x) = Im ln G(x), involving Hilbert transform. The 
foundation theorem for the establishment of this 
interrelation in the class of quadratically integrable 
functions is the Titchmarsh theorem, Refs. 1, 3, and 8.  
But the condition of quadratic integrability does not 
allow one to consider the functions, that do not 
diminish at x → ±∞, for example, the periodic 
functions.  Therefore we address to Ref. 1, page. 306, 
where the theorem is proved setting the following 
expression 
 

χ(ζ) = ln⏐G(ζ)⏐= 
η 
π 

 ⌡⌠
$∞

∞

 
ln⏐G(s)⏐ 

(s $ x)2 + η2 ds + cη, (1) 

 

where c = lim
η→∞

 sup 
ln⏐G(0 + iη)⏐ 

η   and s is the real 

variable.  In so doing it was assumed, that G(x) is an 
analytical function of the finite degree of the growth, 
when η > 0.  This is possible, if G(x) is an entire 
function of the exponential type, or if G(x) has causal 
Fourier transform being an analytic signal.  Besides the 
Paley$Wiener condition holds3,10,11 

 

 ⌡⌠
$∞

∞

 
ln⏐G(x)⏐ 

1 + x2  dx < ∞. 

 

Having substituted the Cauchy$Riemann condition for 

function ln G (x + iη), namely, 
 ∂χ

 ∂x = 
 ∂ϕ

 ∂η , 
 ∂χ

 ∂η = $ 
 ∂ϕ

 ∂x, 

into the expression for total differential of the function 
Im ln G(x + iη), we have 

dϕ(x, η) = 
∂χ(x, η)

∂η  dx $ 
∂χ(x, η)

∂x  dη. (2) 

 

After taking derivatives of Eq. (1) with respect to 
x and η, we find  

 

∂χ(x, η)

∂x  = 
 2η

π  ⌡⌠
$∞

∞

 (x $ s) χ(s) [(s $ x)2 + η2]$2 ds, 

∂χ(x, η)

∂η  = 
 2η2

π  ⌡⌠
$∞

∞

 χ(s) [(s $ x)2 + η2]$2 ds + 

 

+ 
1
π ⌡⌠

$∞

∞

 χ(s) [(s $ x)2 + η2]$1 ds + c.  (3) 

 
 

In the region of the function analyticity the 
integral of its total differential does not depend on the 
integration path. Having substituted derivatives from 
Eq. (3) in Eq. (2), taking η = 0, and integrating over 
x, we obtain  

ϕ(x) = 
1
2π v.p. ⌡⌠

$∞

∞

 
χ(s) 
x $ s

 ds + l(x) = H
x
 χ(s) + l(x), (4) 

 

where H
x
 is the operator of Hilbert transform over 

variable x and l(x) = cx + const. 
Thus determined phase we call the minimal phase, 

and the wave with such a phase is the minimal$phase 
wave.  The expression (4) is called the logarithmic 
Hilbert transformation,7 or the dispersion relation.6,12  
This notation is traditional.  First similar relation was 
obtained by Kramers and Kronig.  It connects the real 
and imaginary parts of the complex refractive index of 
a medium, that causes the wave dispersion, Refs. 2, 8.  
In that case the argument of the Hilbert transform was 
the optical frequency. 

The functions, vanishing at infinity, do not tend to 
a finite  limit after taking their logarithm, therefore  
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the improper integral, Eq. (4), may not exist.  The 
integral divergence is usually eliminated by 
differentiation of the function transformed, and by 
multiplying it by a suitable window, using the so called 
subtractions,8 thus making transition to the region of 
Fourier transform.  In any case there is a need to 
analyze the class of functions to be transformed. 

The class of periodic functions is of special interest 
since it is just for such functions of the fast Fourier 
transform (FFT) applies.  This algorithm is the basis 
for numerical analysis of signals and realizes the 
Hilbert transform. 

Let us transform Eq. (4), assuming without any 
loss of generality, that the functions ϕ(x) and χ(x) 
have the 2π period.  Then the relation 
(x → x + 2π) ⇒ (s → s $ 2π) is valid and substitution of 
the variables x = exp iϑ, s = exp iθ is possible, which 

results4 in 
ds

x $ s
 → 

1
2

 cot 
ϑ $ θ

2
 dθ + 

i

2
 dθ. 

 

Then the expression (4) takes the form 
 

ϕ(ϑ) = 

1
2π⌡⌠

0

2π

 χ(θ) cot 
ϑ $ θ

2
 dθ + 

1
2π⌡⌠

0

2π

 χ(θ) dθ + l(ϑ). (5) 

 

The singular Hilbert integral, entering into this 
dispersion relation, has only one singular point in 
contrast to the integral in expression (4). 

Let us give, as an example, two minimal$phase 
solutions to the wave equation.  The first one is the 
plane wave exp iαx, but it is the degenerate case, here 
the phase consists only of one linear component.  The 
second one is a more interesting paraxial Gaussian beam 

 

G(x, y, z) = 
a

1 + iγz exp ⎝
⎜
⎛

⎠
⎟
⎞

ikx $ 
k γ

2
 
x

2
 + y2

1 + iγz   , 

 

where z is the longitudinal coordinate; x, y are the 
transverse coordinates; a and k are constants.  Having 
substituted the complex value γ in the form 

γ = (p + iq)/(p2 + q2) into the expression for 
G(x, y, z) and having executed transformation, we can 
write the following expressions: 

ln⏐G(x, y, z)⏐= χ(x, y, z) =  
 

= const $ 
k

2
 

p(x2
 + y2)

(z $ q)2 + p2 $ 
⌡
⌠ 

 

(z $ q) dz

(z $ q)2 + p2 , 

 

arg G(x, y, z) = ϕ(x, y, z) =  
 

= kz + 
k

2
 
(z $ q) (x2

 + y2)

(z $ q)2 + p2  $ 
⌡
⌠ 

 

p dz

(z $ q)2 + p2 . 

 

Comparing the logarithm of the module and 
argument of the Gaussian beam and using Hilbert 
transform tables,5 we have  

 
ϕ(x, y, z) = H

z
 χ(x, y, z) + kz. 

Let us introduce the oblique cross section of the 
beam G(x, y, z) cut by the plane z = z0 + θ x, θ > 0, 
y = y and find ϕ(x, y, θ) = H

x
 χ(x, y, θ) + l(x, y), 

where the last summand is some plane. 
The generalization of the dispersion relation (4) 

to the case, when G(ζ) has zeroes and ln G(ζ) has 
singularities in the upper half$plane of the complex 
variable  ζ, one can obtain using the Blaschke  

factor,6,7,8  B(ζ) = o
k

 
ζ $ ζk
ζ $ ζ*k

 , which is purely phase 

function on the real axis 
 

B(x) = exp i 2 ∑
k

 arctan 
xk $ x

ηk
 . (6) 

 

The product G(ζ) ⋅ B(ζ) will have zeroes at the 
points ζk = xk + iηk of the upper half$plane, that 

appear here as the conjugated points ζ*k of the bottom 
half$plane due to multiplication by the Blaschke 
factor. 

Because the wave function is multidimensional we 
may rewrite Eq. (4) for the general case as follows: 

 

ϕ(x, x
$
) = H

x
 ln ⏐G(x, x

$
)⏐+ l(x, x

$
) + 

+ 2 ∑
k

 arctan 
xk(x

$
) $ x

ηk(x
$
)

, (7) 

 

where x
$
 denotes all variables, except for x, l(x, x

$
) is an 

arbitrary function of x
$

 and a linear one of x. 
At present no effective methods of finding the 

coordinates of complex zeroes are known for Eq. (7) to 
be used.  Nevertheless it is possible to identify the 
conditions for the minimal$phase signal to exist, when 
no zeroes in the complex half$plane occur.  The real 
zeroes of the wave function also create difficulties.  
They result in the logarithmic singularities when using 
Eq. (4) and in breaks of the phase function.  That 
means that the so-called dislocations appear.  There is 
also the problem of the constructive generalization of 
the dispersion relations to the two$dimensional case.  
But first we shall consider the robustness of the phase 
determination from the dispersion relations and the 
criterion of its correctness. 

 
2. ROBUSTNESS OF THE WAVE 

APPROXIMATION BY A FUNCTION WITH A 

FINITE FOURIER TRANSFORM 

 
The dispersion relation (4) has been derived for 

the approximation of the wave function, 

G(x, x
$
) = U(x, x

$
) + iV(x, x

$
),  

 

by a function with a finite spectrum.  But, in reality 
the spectrum may be infinite, therefore it is necessary 
to investigate the convergence of the wave model 
components, when extending their spectra of spatial 
frequencies.  
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We shall consider one$dimensional cross section of 
the real part of the wave function U(x) and its finite 
model Us(x). Let U(x) have absolutely integrable 
spectrum S(α), then 
 

U(x)=⌡⌠
$∞

∞

 S(α) eiαx
 dα,  Us(x) = ⌡⌠

$s

s

 S(α) eiαx
 dα, 

 ⌡⌠
$∞

∞

 ⏐S(α)⏐dα = M. 

According to the Weierstrass ratio test the 
improper integral for Us(x) converges uniformly to the 
function U(x) at s → ∞, that is starting with some s 
⏐U(x) $ Us(x)⏐< ε for all x, where ε is an arbitrarily 
small constant.  

The uniform convergence of the imaginary part of 
the model Vs(x) follows from the property of the 
Fourier transform, according to which the majorant of 
the integrand does not vary 

 

Vs(x) = ⌡⌠
$∞

∞

 
Us(y) 
x $ y

 dy = ⌡⌠
$∞

∞

 
dy 

x $ y
 ⌡⌠
$s

s

 S(α) eiαy dα = 

= ⌡⌠
$s

s

 i sgn α S(α) eiαx dα < M. 

 

The squares of the functions considered also 
uniformly converge.  It follows from the inequality 

 

⏐U
2(x)$U

2
s(x)⏐=⏐U(x)$Us(x)⏐⏐U(x)+Us(x)⏐< 2 Mε, 

 

the right-hand side of which vanishes as vanishes ε at 
s → ∞. 

We shall consider the convergence of the 
logarithm of the module χs = ln⏐Gs(x)⏐ to its limit at 
⏐Gs(x)⏐> 0. We have 

 

1
2
 ⏐ln χ2 $ ln χ2

s⏐= 
1
2
 ln 

⎝
⎜
⎛

⎠
⎟
⎞

1 $ 
χ2 $ χ

2
s

χ2    , 

 
 

but ⏐χ2 $ χ2
s⏐< 4 Mε, than the uniform convergence is 

provided.  
Finally, the convergence of the model phase ϕs 

follows from the lack of the singularity points of the 
function χs on the real axis, ⏐Gs (x)⏐> 0, and from the 
existence of the Cauchy principal value for the Hilbert 
integral, (4). 

The inverse statement is also true, i.e., from the 
uniform convergence of the sequences ϕs and χs follows 
the uniform convergence of the wave function, which is 
calculated from these sequences.  Actually, for all x 

 

lim
s → ∞

 

exp (χ + iϕ)

exp (χs + iϕs)
 = exp lim

s → ∞
 [χ $ χs + i (ϕ $ ϕs)] = 1. 

 

Thus the uniform convergence of the finite model 
components of the wave function to their limits allows 
one to apply the dispersion relation (4) when 
determining the wave function phase as the phase of 
the entire function of exponential type that 
approximates the wave function.  The criterion 
correctness of such a procedure is an arbitrarily exact 
coincidence of the initial wave function with the wave 
function, the phase of which is determined by the 
dispersion relation. 

 
3. CONDITIONS OF THE CAUSALITY EXISTENCE 

OF THE WAVE FUNCTION LOGARITHM 

FOURIER TRANSFORM 
 
We shall first consider necessary conditions.  Let 

R(x) = ln G(x) be a complex function limited on the 
real axis, being an element of A0 set with the causal 
spectrum functions, the lower frequency of which is 
α0 ≥ 0. 

Let us consider the power series 
 

G(x) = exp R(x) = 1 + ∑
k=1

∞

 
R

k(x)
k!

 = 1 + W(x) (8) 

 

in order to find out the properties of G(x) function. 
From the limitation of R(x) follows uniform 

convergence of this series at all x, determining the 
function W(x).  Fourier spectrum of the product of n 
functions is equal to n$fold convolution of these 
functions spectra.  We shall require the existence of the 
convolution for a spectrum of R(x), then the Fourier 
transform of the power series in (8) will also exist. The 
convolution of the causal spectra, which is by 
definition the case with the spectrum of the function 
R(x), will also be causal. Therefore the lower 

frequency of the spectrum of Rk(x) will be kα0 ≥ 0. 
Besides, from the limitation of R(x) function 

follows the condition ⏐G(x)⏐> 0.  Then from the 
inequality  

 

⏐G(x)⏐2
 = 1 + ⏐W(x)⏐2

 + W(x) + W*(x) > 0  
 

we obtain ⏐W(x)⏐< 1.  
Let us now define sufficient conditions.  Let 

G(x) = 1 + W(x), ⏐G(x)⏐> 0, and ⏐W(x)⏐< 1. Then 
the power series  

 

ln G(x) = ln [1 + W(x)] = ∑
k=1

∞

 ($ 1)k+1 
W 

k(x)
k!

 (9) 

 

uniformly converges along the entire real axis.  Let also 
W(x) ∈ A0 with the lower frequency of the spectrum 
α0 ≥ 0.  Then by virtue of the convolution causality of 
the spectra of the analytic signals the function ln G(x) 
is an element of A0 set with the lower frequency of the 
spectrum α0. 

Thus, the existence of the dispersion relations (4) 
is determined by the following relationship: 
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⎣
⎢
⎡

⎦
⎥
⎤ln G(x) ∈ A0, α0 > 0,

⏐G(x)⏐< ∞
 ⇔ 

⎣
⎢
⎡

⎦
⎥
⎤1 + W(x) = G(x) ∈ A0, ⏐G(x)⏐< 0.

W(x) ∈ A0, ⏐W(x)⏐< 1, α0 > 0
 ,  (10) 

 

i.e., it is necessary and sufficient for G(x) to be the 
sum of a constant and an analytic signal with the 
amplitude less than this constant.  This result can  
also be obtained by the Rouche theorem, 
Ref. 9, page 287. 

Let us now consider the consequence of the 

conditions (10).  Let G(x) be the function with the 
period T being presented by a segment of a Fourier 
series with the frequencies from the interval [n, N].  
Let us make the transformations 

 

G(x) = ∑
k=n

N

 ck e
(i2πk/T)x →  ⊗  →

↑
e($ i2πn/T)x

cn + ∑
k=1

N$n

 ck+n e
(i2πk/T)x = cn + W(x).  (11) 

 

If the inequality ⏐W(x)⏐< cn holds, then the final 
result in Eq. (11) satisfies to conditions (10) and G(x) 

is the minimal$phase function with some linear phase 
component. 

In experiment only intensity is accessible for 
analysis, and the conclusions should be drawn from a 
priopi information concerning the wave properties.  
Possibly, the following formulation of the conditions 
for minimal phase existence will be more practically.  
The periodic analytic signal is the minimal$phase at a 
priopi prevalence of an oscillation of main frequency 
and absence of constant component. 
 

4. DISPERSION RELATIONS FOR  

THE WAVE FUNCTION LOGARITHM  

IN A TWO$DIMENSIONAL CASE  

 

In a two$dimensional case we shall require the 
uniqueness of the phase ϕ(x, y) for the function 
G(x, y). This requirement is provided by the fact that 
the dispersion relation, in which the Hilbert transform 
over argument x is executed, should coincide with the 
dispersion relation, in which the argument of Hilbert 
transform is y. This is presented in the form  

 

ϕ(x, y) = H
x
 χ (x, y) + xa (y) + b (y) + const = 

 

= H
y
 χ (x, y) + yc (x) + d (x) + const. (12) 

 

The one$dimensional functions entering this 
expression have to be defined.  For this purpose we 
shall present without any loss of generality the 
logarithm of the amplitude in the form 

 

χ (x, y) = 
+
χ (x, y) + 

|
χ (y) + 

$
χ (x). (13) 

 

Here the first component has no one$dimensional 
additive components, they are set by two other 
components.  Let us now substitute Eq. (13) into 
Eq. (12) and write the following equalities:  
 

c(x) = c = const,   a(y) = a = const,  
 

d(x) = H
x
 
$
χ(x) + ax,   b(y) = H

y
 
|
χ(y) + cy, 

 

H
x
 
+
χ(x, y) = H

y
 
+
χ(x, y). (14) 

 

Now substitute these equalities into Eq. (12) and, 
then using the function χ (x, y) again, we shall obtain 

the dispersion relations between the phase and 
logarithm of the amplitude in the two$dimensional case 

 

ϕ(x, y) = 
 

= l(x, y)+H
x
 χ(x, y)+[H

y
 χ(x, y) $ H

x
 χ(x, y)]x=const =  

 

= l(x, y)+H
y
 χ(x, y)+[H

x
 χ(x, y) $ H

y
 χ(x, y)]y=const ,  

 

  l(x, y) = ax + cy + const.  (15) 
 

Here the two$dimensional functions are related 
the one$dimensional Hilbert transform.  This result is 
the consequence of the physically reasonable 
requirement of the two$dimensional phase to be 
unique, it was published in Refs. 13, 14. 

In other works12,17 exist, there were also 
considered generalizations of the dispersion relations to 
a two$dimensional case.  In our earlier work12 we 
studied the function ln G(x1 + iη1, x2 + iη2) in the 
space of two complex variables.  Such approaches gave 
no positive results because of the impossibility to solve 
the integrated equations concerning the logarithm of 
the module or the argument of the function G(x1, x2).  
Only in the specific case, when a two$dimensional 
function can be represented as the product of the two 
one$dimensional functions, enables one to obtain the 
final result in the form of a sum of two one$
dimensional Hilbert transforms of these functions. 

If the two$dimensional dispersion relations are 
applied to the function G(x, y), satisfying the existence 
conditions, (10), of the spectrum causality of the 
logarithm of both coordinates 

 

G(x, y) = 1 + W(x, y), ⏐W(x, y)⏐< 1,  
 

W(x0, y) ∈ A0, W(x, y0) ∈ A0, then 
 

W(x, y) = U(x, y) + iV(x, y), 

H
x
 U(x, y) = V(x, y) = H

y
 U(x, y). (16) 

 

From Eq. (16) it follows that W(x, y) has no 
additive one$dimensional components, and the function 
G(ζ1, ζ2) at ζ1 = x + iη1, ζ2 = y + iη2 is a limited function 

at η1 > 0, η2 > 0.  As a result one can find the 
constants from Eq. (15) 
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c = lim
η1 → ∞
η2 = 0

x = 0

sup 
ln⏐G(ζ1, ζ2)⏐

 η1
 = 0 = lim

η2 → ∞
η1 = 0

y = 0

 sup 
ln⏐G(ζ1, ζ2)⏐

 η2
 = a. 

 

The expression (15) is simplified and takes the 
form 

 

arg [1 + W(x, y)] = H
x
 ln⏐1 + W(x, y)⏐+ const = 

 

= H
y
 ln⏐1 + W(x, y)⏐ + const. (17) 

 

Localization of the function spectrum, satisfying 
the two$dimensional dispersion relations, can be 
established proceeding from the property of Hilbert 
transform, according to which it is reduced to 
multiplication by the sign function in the frequency 
region.  Let us designate by the capital letters a Fourier 
image of the values, designated by the appropriate 
lower case letters, and consider the two$dimensional 
spectrum of the function 
ln G(x, y) = χ (x, y) + iϕ(x, y) in the plane of α and 
β frequencies.  From Eq. (15) we have 

 

Χ(α, β) + iΦ(α, β) = 
 

= L(α, β) + (1 + sgn α) [
+
Χ(α, β) + 

 

+ 
$
Χ(α) δ(β)] + (1 + sgn β) 

|
Χ(β) δ(α). (18) 

 

It follows from these relations, that the two$
dimensional Fourier spectrum of the function 
ln G(x, y) is located in one quadrant of the frequency 
plane αβ, including the singularities on the coordinate 
axes.  In this case this is the first quadrant.  Similarly 
for expression (17) it is possible to write the following 
expression: 

 

(sgn α $ sgn β) Χ(α, β) = iδ(α, β). (19) 
 

As is seen, no singularities on the coordinate axes 
occur.  

The application to interferometry.  Let ⏐G(x,y)⏐2 
be the interferogram of a phase object, that is 
⏐W(x, y)⏐= const, and for it the expressions (10) and 
(16) are valid.  Define the rectilinear or curvilinear 
cross section in the plane XY by parametric equations 
x = x(l), y = y(l).  Let the interference fringes have in 
such a cross section a full profile and the object wave 
phase W(l) is monotonic.  Then W(l) will be an 
analytic signal19 in this cross section and the conditions 
(10) hold.  We assume also, that W(l) occupies, in the 
frequency region the interval [b, e] at the Nyquist 
frequency equal to N.  This is enough to write the 
relations for defining the object phase in the 
interferogram cross section 
 

arg W(l) = arctan 

⏐G(l)⏐sin H
l  

ln ⏐G(l)⏐

⏐G(l)⏐cos
 
H
l
 ln ⏐G(l)⏐$ 1

 = 

 

= arg Fbe [exp 2 FbN ln⏐G(l)⏐]. (20) 
 

Here Fbe, FbN are the filtration operators, which make 
all the spectrum values zero outside the interval. 

The fraction in Eq. (20) is copied out from Ref. 6, 
the expression in the right hand side of Eq. (20) has an 
advantage because it does not require knowledge of the 
reference wave value and can be applied to 
interferograms of a general form, at which the 
amplitudes of reference and object waves differ from a 
constant.  This expression provides for homomorphic 
interferogram filtration and suppress the multiplicative 
noise in the interval ($ b, b), and the additive noise 
outside the interval [b, e].  These opportunities were 
used for processing the data of a field experiment.15 

 
5. THE DISPERSION RELATION WITH A 

WEIGHTING FUNCTION 
 
This relation may be derived, Ref. 16, in the same 

way as conditions (10).  Let ⏐W(x)⏐= c = const < 1 in 

Eq. (10), then for the function ⏐G(x)⏐2 ln G(x) the 
dispersion relation (21) is valid. One can find that 
 

⏐G(x)⏐2 ln G(x) = 
 

 

= [1 + W(x)] [1 + W*(x)] ln [1 + W(x)] = [1 + 
 

 

+ ⏐W(x)⏐2
 + W(x) + W*(x)] ∑

k=1

∞

 
($ 1)k+1

k
 W

k(x) = 

 

 

= [1 + W(x)] [c2 + W(x)] ∑
k=1

∞

 
($ 1)k+1

k
 Wk$1(x). 

 

The Fourier transform of this expression and as 
well as of Eq. (9) is causal with the lower frequency 
α0 = 0, and therefore the dispersion relation with the 
weighting function 

 

arg G(x) = ⏐G(x)⏐$2 H
x
 ⏐G(x)⏐2 ln⏐G(x)⏐ + l(x) (21) 

 

is valid. 

It seems so that this expression is similar to the 
property of the Hilbert transform 
 

H
x
 Ω(x) U(x) = Ω(x) H

x
 U(x), 

 

that the low$frequency function can be removed out 
from the operator sign.  Here Ω(x) ,  U(x) are real 
functions and their Fourier transforms do not overlap in 
the frequency domain.  But it is not so.  The Fourier 

transforms of functions ⏐G(x)⏐2 ,  ln⏐G(x)⏐ overlap 
on the frequency axis, because both contain W(x) as a 
summand. 
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The condition ⏐W(x)⏐= const holds in the 
interferometry of purely phase objects. Then the 
expression (21) allows one to smoothen the logarithmic 
singularities, when ⏐G(x)⏐→ 0. 

 

6. TRANSFORMATIONS OF THE MINIMAL 

PHASE SIGNALS  
 
Let us now consider the transformations, which 

conserve the minimal phase of the functions 
transformed.  Proceeding from the properties of the 
logarithmic function, for example let it be the raising 
into a power.  But first the transformations are 
interesting, which are characteristic of optical systems. 

The extension$compression transformation. Let the 
function G(x) ∈ L2(T) satisfy the sufficient conditions 
of the minimal phase existence and be presented by a 
monotonic function τ (x) ∈ [0, T], mapping the interval 
[0, T] on itself. Then the ranges of G(x) and G(τ) 
values coincide, ⏐G(τ)⏐> 0 and there exists ln G(τ).  

Having considered the Fourier series  
 

G[τ(x)] = 1 + ∑
k=1

∞

 ak exp i 
2πk

T
 τ(x), 

 

we shall notice, that each term of the series has the  
dispersion causal Fourier transform19 because of the 
monotony of the function τ(x).  Therefore the spectrum 
of the function G[τ(x)] is causal in the dispersion 
sense, and its phase is minimal in the same sense.  It 
should be noted that the width of the spectrum is the 
second moment of the square of its module. 

The optical feedback according to the scheme (22) 
allows one to form a signal with a minimal phase, 

inverse to that which follows from the conditions (10) 
 

1 � ⊕
↓

⎯⎯→

←⎯⎯⎯

1

W(x, y)

�

↑
→ G(x, y). (22) 

 

From this scheme we shall find that  

G(x, y) = 1 + G(x, y) ⋅ W(x, y), then the function 

G(x, y) = [1 $ W(x, y)]$1.  If W(x, y) is a two$
dimensional analytic signal and the condition 
⏐W(x, y)⏐< 1 holds, the function ln G(x, y) =  
 

= $ ln [1 $ W(x, y)] will have the minimal phase 
based on the necessary and sufficient conditions (10). 
 

7. DISPERSION RELATIONS FOR THE WAVE 

FUNCTION ZERO 
 
Let us present the wave, in an arbitrarily small 

vicinity of its zero point by the linear terms of the 
power series 
 

G0(x, y) = (p
R
 x + q

R
 y) + i (p

I
 x + q

I
 y). (23) 

 

Having chosen a suitable coordinate system and having 
made the normalization, we shall obtain the function of 
a zero (23) in the form 
 

G0(x, y) = x + (a + ib) y = 

= (x + ay)2 + b2 y2 exp i arctan 
by 

x + ay
 . (24) 

 

In these expressions p
R
, p

I
, q

R
, q

I
, a, b are the real 

valued constants.  
Consider now the operation sequence over the 

variable x at y = const 
 

 

ln⏐G0(x, y)⏐ = ln (x + ay)2 + b2 y2 ⎯⎯→
∂/∂x

 

x + ay

(x + ay)2 + b2 y2 ⎯→
H

 
 by

(x + ay)2 + b2 y2 ⎯⎯→
I dx

 arctan 
 by

x + ay
 + const. 

 

The comparison of the result of this operations 
with the Eq. (24) shows, that the function of zero is 
the minimal$phase in a rectilinear cross section not 
passing through zero in the XY plane.  That is 
logarithm of the module of zero function and its phase 

are connected by Hilbert transform in this cross section 
accurate to a constant. 

Let us present the function of zero in the polar 

coordinate system ρ, ϑ and make the following 
operations: 
 

 

G0(x, y) = (pRx + qRy) +i (pIx + qIy) ⎯⎯⎯⎯→

x = ρ cos ϑ
y = ρ sin ϑ

 ρ (peiϑ + qe$iϑ) →  ⊗  →

↑
(qρ)$1

 ceiϑ + e$iϑ →  ⊗  →

↑
eiϑ

 1 + ei2ϑ = G0(ϑ), 

  (25) 
 

 

where p, q, c are complex constants, here ⏐q⏐>⏐p⏐, 
and ⏐c⏐< 1.  

From the result of (25) it follows, that the 
function G0(ϑ) = exp χ0(ϑ) + iϕ0(ϑ) satisfies the 
necessary and sufficient conditions (10) of the minimal 

phase existence ln G0(ϑ) ∈ A0.  Therefore, the 
logarithm of a module and the phase of the function 
G0(ϑ) are connected by the Hilbert transform on an 
arbitrarily small circle with a center at the zero point 
accurate to a linear function l(ϑ) ∈ [const, 2π ± const] 
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ϕ0(ϑ) = H
ϑ

 χ0(ϑ) + l(ϑ). (26) 

 

Let the zero point be at the center of the Gaussian 
beam 

 

W(x, y) = [x + (a + ib) y] exp [$ (x 

2 + y 

2)/2 r 

2].(27) 
 
Using the relations 
 

exp $ 
x 

2

2 r 

2 ⎯→
F

 2π r exp $ 
r 

2 α 

2

2
 , 

 

x exp $ 
x 

2

2 r 

2 ⎯→
F

 i 2π r 

3 α exp $ 
r 

2 α 

2

2
 , 

 

where F is the one$dimensional Fourier transform 
operator.  Let us perform the two$dimensional Fourier 
transform of the expression (27) and find the 
representation of the spatial spectrum of the Gaussian 
beam with a zero at it center 
 
 

S0(α, β) = 
 

 

= i 2π r 

4 [α + (a + ib) β] exp [$ (α2 + β2) r 

2/2]. (28) 
 

 
Here a, b, and r are constants. 

In a polar coordinate system the functions (27) 
and (28) have the minimal phase on circles around a 
zero at a fixed polar radius as in the case (25). 

The Gaussian beam, Eq. (27), and its spatial 
spectrum, Eq. (28), has a zero at the coordinate origin.  
From this it follows, that both these functions, in 
particular, have no constant components.  If the zero of 
a spatial spectrum is placed at the coordinate origin of 
the frequency area, the wave acquires linear phase shift, 
which in polar coordinates ρ, ϑ on a circle ρ = const 
will be transformed into a sum of a sine and a cosine. 
The amplitudes a, and b of these harmonics will be 
determined by the circle radius and the phase 
inclination value. In this case more general dispersion 
relation is valid 

 
ϕ0(ϑ) = H

ϑ
 χ0(ϑ) + a cos ϑ + b sin ϑ + l(ϑ). (29) 

 
The absence of a constant component was found 

out also in the numerical experiment, Ref. 18, where 
zero and focal spots of a light wave, propagating in an 
inhomogeneous medium were studied.  There, the wave 
function zero was placed at the center of the circular 
subaperture without apodization.  The radius of the 
subaperture could be changed, but did not exceed the 
size of the vortex area, where the wave phase had the 
screw structure.  There is no constant component on 
any concentric circle in this subaperture, if zero is at 
the coordinate origin in the spatial frequencies area.  
This is one of the conditions for the minimal phase 
existence. 

Other condition, i.e., the existence of oscillation 
at the prevailing main frequency, holds because of the 
presence of the wave function zero in the subaperture.  
Going round the first order zero, the phase 
monotonically changes from 0 up to ± 2π, the length of 
this interval is equal to the period of the main 
frequency of the azimuth oscillation.  A larger period 
does not exist for the first order zero. 

Under these conditions any wave function should 
have minimal phase on concentric circles around a zero 
in the subapertures and within the area occupied by a 
vortex, if it were the analytic signal.  To use Eq. (10) 
the information about the azimuth wave spectrum 
localization on these circles is also needed.  
Analytically this question is not investigated.  

However in the numerical statistical experiment the 
expression (26) held highly accurate.  For a wave with 
the maximal spatial frequency, equal to 0.04 from the 
Nyquist frequency, the characteristic diameter of the 
vortex area around a zero was 0.2 of the size of the reads$
out matrix.  On the circles within this area, including the 
displaced concerning zero, the degree of causality19 was 
above 0.97, and the rms error for the minimal phase 

calculated by (26) did not exceed 4π⋅10$3 rad. 
The occurrence of the wave function zeroes and of 

the phase dislocations connected with the results in 
disintegration of the wave on separate uncorrelated 
parts at its propagation.  It is especially interesting, 
that the rigid functional connection, established by the 
dispersion relation, exists just in these conditions. 
 

8. CONCLUSIONS 
 

The wave function phase with the absolutely 
integrable spectrum, determined by the dispersion 
relation, differs arbitrarily little from the phase of the 
entire function of the exponential type, the spectrum of 
which coincides with the wave function spectrum on 
the finite interval, at increasing of the interval width. 

Two$dimensional dispersion relations, which set 
the interrelation between a phase and a logarithm of 
the amplitude of a two$dimensional wave function are 
obtained.  These relations generalize the known 
interrelations in one$dimensional case. 

The dispersion relation with the weight, equal to 
the interferogram of the phase object, which sets the 
interrelation between the phase and the logarithm of 
the amplitude of interference field, smoothing the 
logarithmic singularities in the interferogram zeroes is 
obtained. 

In this paper were specified the transformations, 
which are performed by optical systems, that conserve 
the minimal phase of the wave function. 

We have also established, that the wave function 
has a minimal phase on a circle of an arbitrarily small 
radius around a zero point. This property is valid at 
increasing of the radius in the area, occupied  by a 
vortex, if the circle lies in the plane, normal to the 
direction of the wave propagation. 
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