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We study two approaches to statistical analysis of the frequency 

measurements of non-Gaussian signal of the Doppler lidar when using the 

perturbation method. The first approach uses the perturbation method proposed for 

analysis of a random Gaussian signal. The second approach is based on 

renormalization of the average spectrum parameters. When applying the first 

method, one faces the difficulties associated with nonuniform approximation and 

physical interpretation of the results.  It is shown that renormalization of the 

average spectrum parameters gives rise to a perturbation theory series for 

estimating Doppler frequency. This series meets the requirement of the uniform 

approximation and allows the interpretation of obtained results. 
 

1. INTRODUCTION 
 
It is known that application of the small 

perturbation method without meeting the requirement 
of uniform approximation results in significant 
difficulties.  In the theory of oscillations, 
hydrodynamics, the theory of laser generation, and 
other branches of physics,1,2 the presence of secular 
terms in serial expansions makes the physical 
interpretation of the observed phenomena significantly 
much more complicated.  Nonlinear properties of 
oscillations, generation, etc. are the cause of 
nonuniform approximation and difficulties in physical 
approximation of the results that can be overcome using 
the renormalization method. 

This paper considers the methodical problems of the 
perturbation methods application to statistical analysis of 
the Doppler lidar signal frequency measurements.  Under 
study are two approaches to statistical analysis of 
frequency measurements of non-Gaussian signal of the 
Doppler lidar when applying the perturbation methods.  
The first approach uses the perturbation theory proposed 
in Refs. 6 and 7 for analysis of random Gaussian signal.  
The second approach is based on renormalization of the 
average spectrum parameters.  The characteristic feature 
of the problem considered is the fact that Doppler lidar 
signal is non-Gaussian random process and only when the 
conditions of the central limit theorem hold true the 
statistical properties become Gaussian.3$5 It is shown 
that the nonuniformity in approximation and 
difficulties in physical interpretation of the results 
that can be overcome using renormalization method 
are caused by non-Gaussian properties of a Doppler 
lidar signal. 

2. USE OF PERTURBATION METHODS  
IN STATISTICAL ANALYSIS OF DOPPLER 

MEASUREMENTS 
 

The estimate of the Doppler frequency for the 
method of spectral function4 has the form  

 

Ω̂d = 
2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

ωm Ŝ(ωm)/Ŝ0 , (1) 

 

where 
 

Ŝ(ωm) = 
1

MNsΔt
 ∑
i=1

M
 

 

∑
n=0

Ns$1
 

 

 j(ti + nΔt) exp ($i ωm nΔt)  

2

  

 

is the spectrum estimate; ωm = 
2πm
Ns Δt

 = 
2πm
Ts

 ,  

m = 0, ±1, ..., ±(Ns $ 1);  Ŝ0 = 
2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

 Ŝ(ωm);  

l is the number of cases of the length Ts; Δt is the 
discreteness range; Ns = Ts/Δt, j(t) is the Doppler lidar 
signal. It is assumed that for the Doppler lidar signal the 
assumption is true that only single scattering of optical 
radiation by atmospheric particles moving in turbulent 
flow3,4 occurs. As to the medium, it is assumed that 
particles are distributed in the scattering volume 
homogeneously and independently. The particle number 
follows the Poisson law, and the atmospheric turbulence 
flow motion velocity is distributed following the 
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Gaussian law.  The noise fluctuations are the Gaussian 
white noise. 

When studying the uniform approximation, under 
consideration are the case of Gaussian statistics and two 
cases corresponding to non-Gaussian statistics of the 
Doppler lidar signal.  Gaussian statistics of the Doppler 
lidar signal is observed under the following conditions: 
d = ∞ (where 2d is the characteristic size of the 
scattering volume), that means that the influence of 
correlation of the local Doppler frequency fluctuations 
is totally neglected. 

The first case associated with the non-Gaussian 
statistics corresponds to the case of a strong correlation 
of the local Doppler frequency fluctuations, d → 0.  
The second case associated with the non-Gaussian 
statistics is the case of weak correlation of the local 
Doppler frequency fluctuations, d → ∞.  In this case, 
the influence of correlation properties of local Doppler 
frequency fluctuations is taken into account as a small 
perturbation.4,5  Thus, it is characteristic of the first 
and second cases, that non-Gaussian properties of the 
Doppler lidar signal manifest themselves in maximal 
and minimal form, respectively. 

 
2.1.  Analysis of a random Gaussian signal by perturbation 

methods 
 
In spite of different behavior of the signal 

fluctuations, the case of Gaussian statistics (d = ∞) and 
the case of weak correlation (d → ∞) have common 
regularities. Therefore let us consider separately the 
approach to statistical analysis of Doppler 
measurements of a random Gaussian signal for the 
method of spectral function.  The approach to 
statistical analysis of Doppler measurements of a 
random Gaussian signal was proposed in Refs. 6 and 7 
for the method of autocorrelation function and the 
maximum likelihood method.  In this statistical analysis 
two assumptions are used by turn.  First, it is assumed 
that as a zero order of the perturbation theory the 
average characteristics of the Doppler lidar signal, for 
example the autocorrelation function, can be taken.  
Then, having written the perturbation series, the 
assumption of Gaussian properties of the signal is used.  
Therefore let us present the spectrum estimate as the 
average spectrum and small perturbation 

 

Ŝ(ωm) = s(ωm) + Δs(ωm) + ... , 
 

Ŝ0 = s0 + Δs0 + ... , (2) 
 

where s(ωm) is average spectrum; s0 = 
2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

s(ωm) ; 

Δs(ωm) and Δs0 are the first-order terms of the 
perturbation theory.  It follows from Eqs. (1) and (2) 
that in the first order of perturbation theory the estimate 
of the Doppler frequency takes the following form: 

Ω̂d = ωd $ 
2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

(ωm $ ωd) Δs(ωm)/s0 , (3) 

 
where ωd is the average Doppler frequency. 

Then, following Refs. 6 and 7, let us assume that 
the parameter Δs(ωm), entering in the Eq. (3), is 
defined by Gaussian properties of the Doppler lidar 
signal.  In the case of Gaussian statistics, the 
expression for measurement error in the average 

Doppler frequency var Ω̂d = <(Ω̂d $ ωd)2>, calculated 
based on Eq. (3) under the condition d = ∞ as a result 
of averaging over random position and number of 
particles in the scattering volume, over fluctuations of 
the velocity of the atmospheric turbulent flux motion, 
as well as noise fluctuations, takes the form  

 

var Ω̂d = 
π

2MTs
 <Δω′ 2d,g> + 

2
M S/N

 + 

 

+ <Δω′ 2d,g> + 
π2

3MT
2
s S

2/N
2 , (4) 

 

where <Δω′ 2d,g>  is the average spectrum halfwidth s(ωm); 
S/N is the signal-to-noise ratio.  Equation (4) has simple 
physical meaning.  As seen from the equation, the first 
two terms are functions of the average spectrum 
halfwidth s(ωm).  Consequently, they characterize the 
value of measurement error of the average Doppler 
frequency, resulting from the spectrum broadening.  The 
last term differs from zero at <Δω′ 2d,g> = 0, therefore it is 
the measure of statistical uncertainty in measurements of 
harmonic oscillation frequency against the background 
noise.  Thus, for a random Gaussian signal the 
measurement error of average Doppler frequency is 
governed by two factors: spectrum broadening and 
measure of statistical uncertainty of the harmonic 
oscillation measurements against the noise.  It should be 
noted that Eq. (4) coincides with similar expression for 
the method of autocorrelation function obtained in 
Refs. 6 and 7.  This coincidence follows from the fact 
that the methods of autocorrelation and spectral functions 
fall, in their essence, in the category of nonoptimal 
approaches, and therefore should have the same accuracy. 

 

2.2. Statistical analysis of Doppler measurements of 
non-Gaussian signal when using the perturbation 

method6, 7
 

 

Let us consider the first approach to statistical 
analysis of the frequency measurements of non-Gaussian 
signal of a Doppler lidar when using the perturbation 
methods.  This approach is based on the use of 
perturbation method presented in Refs. 6 and 7. 

The expansion (2), as well as the perturbation 
series for estimation of the Doppler frequency (3) will 
be considered valid for a random non-Gaussian signals.  
However, in contrast to derivation of Eq. (4), let us 
assume that parameter Δs(ωm), entering in Eq. (3), is  
 



A.P. Shelekhov Vol. 10,  No. 10 /October  1997/ Atmos. Oceanic Opt.  
 

 

773

defined by non-Gaussian properties of a Doppler lidar.  
The value of measurement error of average Doppler 

frequency var Ω̂d = <(Ω̂d $ ωd)2>, calculated based on 
Eq. (3), takes the form 

 

var Ω̂d = σ2
ωd⌡⌠

 

 

⏐p(rm)⏐
2 
⏐p(rn)⏐

2 
 R

ωd
(rm, rn)drm drn +  

 

+ 

π
2MTs

 σ
ωd ⌡⌠

 

 

⏐p(rm)⏐
2

 ⏐p(rn)⏐
2

 

 

1
 

+ R
ωd

(rm, rn)

1 $ R
ωd

(rm, rn)
 drm drn + 

 

+ 
2

M S/N
 σ2

ωd
 + 

π2

3MTs
2 S2/N

2 ,  (5) 

 

where σ2
ωd

 R
ωd

(rm, rn) = <ω′d(rm) ω′d(rn)>; σ
2
ωd

 is the 

variance; R
ωd

(rm, rn) is the normalized correlation 

function; ω′d(rm) are fluctuations of the local Doppler 
frequency; p(rm) is the cross-section of the  directional 
patterns.4,5 

Let us analyze Eq. (5) for the case of Gaussian 
statistics and for two cases corresponding to non-
Gaussian statistics of the Doppler lidar signal.  In the 
case of Gaussian statistics of Doppler lidar signal 
(d = ∞), the contribution of correlation properties of 
the local Doppler frequency fluctuations is totally 
neglected, i.e. R

ωd
(rm, rn) = 0.  In this case, the 

expression for measurement error (5) coincides with the 
Eq. (4), taking into account the fact that  

<Δω′ 2d,g> = σ2
ωd

.  This coincidence is natural, since 

initially the expansion (2), as well as the perturbation 
series (3) is basic assumption in the statistical analysis 
of Doppler measurements of a random Gaussian signal, 
and asymptotic behavior d = ∞ of Eq. (5) corresponds 
to the case of Gaussian statistics. 

If for the Gaussian statistics the behavior of 
Eq. (5) agrees with Eq. (4) and, consequently, with 
the results of Refs. 6 and 7, then analysis of this 
equation for two cases, corresponding to a non-Gaussian 
signal of a Doppler lidar, leads to contradictory results.  
For strong correlation, i.e. in the first case, the 
expression 1 $ R

ωd
(rm, rn) → 0 and corresponding 

integrand in Eq. (5) increase unlimitedly, so the value 

var Ω̂d → ∞ at d → 0. 
From the physical viewpoint, the unlimited behavior 

of the measurement error at d → 0 is a contradictory 

result.  Really, on the one hand, var Ω̂d → ∞ means that 
the average Doppler frequency cannot be measured at 
strong correlation.  On the other hand, at d → 0 
measured is the frequency of a random harmonic 
oscillation against the noise.  Consequently, the 
uncertainty in measurements of the average Doppler 
frequency due to the spectrum broadening disappears.  
Therefore the value of the measurement error in the 
average Doppler frequency must be defined by a limited 
parameter, related to fluctuations of the frequency of 

harmonic oscillations and the measure of statistical 
uncertainty in measurements of the average frequency 
of the harmonic oscillation against the noise. 

Thus, the behavior of measurement error at d → 0 
is similar to the behavior of solution, for example, in 
the theory of oscillations1,2 before applying the 
renormalization methods.  The measurement error in the 
average Doppler frequency and oscillation energy grow 
unlimitedly, that contradicts to physical meaning.  The 
case d → 0 is characterized by the fact that non-
Gaussian properties of the Doppler lidar signal manifest 
themselves in a maximum degree.  Therefore we can 
conclude that the cause of nonuniform approximation 
and difficulties in physical interpretation of the results 
is in non-Gaussian properties of the Doppler lidar 
signal. 

In the case of a weak correlation (d → ∞) the 
result is also difficult for physical interpretation.  In 
this case the expression for measurement error of the 
average Doppler frequency takes the following form: 

 

var Ω̂d = σ2
ωd⌡⌠

 

 

⏐p(rm)⏐
2 
⏐p(rn)⏐

2 
 R

ωd
(rm, rn)drm drn +  

 

+ 

π
2MTs

 σ
ωd⌡⌠

 

 

⏐p(rm)⏐
2

 ⏐p(rn)⏐
2

 ⎝
⎛

⎠
⎞1 + 

3
2

 R
ωd

(rm, rn)  drmdrn + 

 

+ 
2

M S/N
 σ2

ωd
 + 

π2

3MTs
2 S2/N

2 .  (6) 

 
For a weak correlation, in behavior of the measurement 
error in the average Doppler frequency, regularities 
must be observed, which are common for the behavior 
of the same parameter but for Gaussian statistics.  
Therefore one should expect here that the second and 
third terms in the right-hand side of Eq. (6) should 
have the form similar to Eq. (4).  However, the 

parameter var Ω̂d cannot be presented as a function of 
the average spectrum halfwidth, i.e. 
 

var Ω̂d ≠ σ
2
ωd⌡⌠

 

 

⏐p(rm)⏐
2 
⏐p(rn)⏐

2 
 R

ωd
(rm, rn)drm drn + 

 

+ 
π

2MTs
 <Δωd,g

′2 > + 
2

M S/N
 <Δωd,g

′2  > + 

π2

3MTs
2 S2 / N2 ,  

  (7) 
 

and, consequently, have the form similar to Eq. (4).  
Therefore, in my opinion, it is difficult to give simple 
physical interpretation to Eq. (6) in the case of a weak 
correlation. 

Thus, the application of perturbation methods6,7 
results in difficulties at statistical analysis of 
measurements of the Doppler frequency of a non-
Gaussian signal.  They are nonuniform approximation 
and difficulties in physical interpretation of the results 
obtained at weak and strong correlation. 
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Equation (5) coincides with similar equation from 
Refs. 8 and 9 at S/N → ∞ and p(rm) = p(zm), where 
zm is the projection of vector rm onto the measurement 
direction.  Coincidence of the results is indicative of 
the fact that the approach to statistical analysis of 
Doppler measurements proposed in Refs. 8 and 9 leads 
to the same difficulties: nonuniform approximation and 
difficulties in physical interpretation.  It should be 
noted that in this paper, in contrast to Refs. 8 and 9, 
we do not assume Δs0 = 0.  Therefore the derivation of 
Eq. (5) is, from the methodical point of view, more 
correct and to a greater degree corresponds to the basic 
assumptions.6,7 

 
2.3. Statistical analysis of Doppler measurements of a 

non-Gaussian signal when using the perturbation 
method based on renormalization of the average 

spectrum parameters 
 
The second approach to applying of the perturbation 

method allows us to overcome the above difficulties, 
related to the divergence of perturbation series and 
difficulties in physical interpretation of the results.  This 
approach is based on renormalization of the average 
spectrum parameters.  It is known1,2 that in the theory of 
nonlinear oscillations, for example, to obtain uniform 
approximation, perturbation is added not only to solution 
itself, but to the parameters of solution as well, i.e. the 
oscillation frequency.  It results in the situation when the 
solution already in zero order depends on nonlinearity 
parameters.  In statistical analysis of Doppler frequency 
measurements, to obtain uniform approximation, we will 
add perturbation to both spectrum and  parameters of the 
average spectrum.  As spectrum parameters, we take 
average spectrum moments.  For example, the first 

moment ωd and the second moment <Δωd,g
′2 > of the 

average spectrum after renormalization takes the 
following form: 

 

ωd fi ωd + ω′ng = ωd + 
⌡⌠

 

 

⏐p(rm)⏐2 ω′d (rm) drm ,  (8) 

 

<Δωd,g
′2 > fi Δωd,ng

′2  = 
 

= 

1
2

 

⌡⌠
 

 

⏐p(rm)⏐2 ⏐p(rn)⏐
2

 (ω′d (rm) $ ω′d(rn))
2

 drm drn . 

  (9) 
 

It is seen from Eqs. (8) and (9) that, in the zeroth 
order, the frequency, at which the maximum of 
spectrum estimate after renormalization is reached, and 
spectrum halfwidth depend on random parameters. In 
place of expansion (2) and perturbation series for 
estimation of Doppler frequency (3), we have 
respectively the following expressions: 
 

Ŝ(ωm) = S(ωm) + ΔS(ωm) + ... ,  
 

Ŝ0 = S0 + ΔS0 + ... , (10) 
 

Ω̂d = ωd + ωng
′

 $ 

2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

(ωm $ (ωd + ωng
′ ) Δ S(ωm)/ S0 ,  

  (11) 

where S(ωm), S0 = 
2π
Ts

 ∑
m=$(Ns$1)

Ns$1
 

 

S(ωm) are terms of the 

zeroth order of smallness; Δ S(ωm) and Δ S0 are terms 
of the first order of smallness of the perturbation 
theory. 

The value of measurement error in the average 

Doppler frequency var Ω̂d = <(Ω̂d $ ωd)2>, calculated 
using Eq. (11) as a result of averaging over random 
positions and number of particles in the scattering 
volume, over fluctuations of the velocity of 
atmospheric turbulent flux, as well as over the noise 
fluctuations, takes the following form: 

 

 

var Ω̂d = σ2
ωd⌡⌠

 

 

⏐p(rm)⏐
2 
⏐p(rn)⏐

2 
 R

ωd
(rm, rn)drm drn + 

π
MTs

 
 ⌡⌠

 

 

 ⏐p(rm)⏐
2
⏐p(rn)⏐

2 

⎩⎪
⎨
⎪
⎧<(ωd′ (rn) $ ωng

′ ) (ωd′ (rm)
 
$ ωng

′ )>

⎣
⎡

⎦
⎤1

2
 <(ωd′ (rn) $ ωd′ (rm))2>

 1/2
 + 

 

+ 

⎭⎪
⎬
⎪⎫<(ωd′ (rn) $ ωd

′ (rm)) (ωd′ (rn)
 
$ ωng

′ )> <(ωd′ (rm) $ ωd
′ (rn)) (ωd′ (rm)

 
$ ωng

′ )>

2 ⎣
⎡

⎦
⎤1

2
 <(ωd′ (rn) $ ωd′ (rm))2>

 3/2
 drm drn + 

 

 
2

M S/N
 
⌡⌠

 

 

 ⏐p(rm)⏐
2 
 <(ωd′ (rm)

 
$ ωng

′ )2> drm+ 
π2

3MTs
2 S2/N

2 .  (12) 

 

Let us study the behavior of Eq. (12) in the case of 
Gaussian statistics of the Doppler lidar signal, as well as 
in the case of weak and strong correlation.  At d = ∞, i.e. 
in the case of Gaussian statistics, Eq.(12) coincides with 

Eq. (4).  This fact indicates that conditions of 
renormalization have been selected correctly. 

In the case of a strong correlation (d → 0), the 
integrand of the second and third terms in the right-
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hand side of Eq. (12) tend to zero, therefore the 
measurement error takes the form  

 

var Ω̂d = σ2
ωd

 + 
π2

3MTs
2 S2/N

2 ≠ ∞ . (13) 

 

As seen from Eq. (13), in contrast to the result 
(5) this approximation is uniform.  From the physical 
point of view, in the case d → 0 the behavior of the 
measurement error described by Eq. (12) is not a 
contradictory result.  As was already noted, measured 
in this case is the frequency of random harmonic 
oscillation against the noise.  The first term in the 
right-hand side of Eq. (13) describes the fluctuations of 
the harmonic oscillation frequency.  The second term 
describes the measure of statistical uncertainty in the 
measured harmonic oscillation frequency against the 
noise.  Thus, use of application of renormalization 
methods in the statistical analysis of frequency 
measurements of non-Gaussian signal of a Doppler 
lidar, as, for example, in the theory of oscillations,1,2 
allows the results to be obtained that do not contradict 
the physical sense. 

Let us consider the physical meaning of Eq. (12) 
at weak correlation (d → ∞).  In this case, the 
measurement error in the average Doppler frequency 
has the form 

 

var Ω̂d = σ2
ωd

 

⌡⌠
 

 

 ⏐p(rm)⏐
2 
⏐p(rn)⏐

2 
R
ωd

(rm, rn)drm drn +  

 

+ 

π
MTs

 <Δω′ 2d,ng> + 

2
M S/N

 + <Δω′ 2d,ng> + 

π2

3MT
2
s S

2/N
2 ,  

  (14) 
 

where  
 

<Δω′ 2d,ng>= 
1
2
 
⌡
⌠

 

 

⏐p(rm)⏐
2
⏐p(rn)⏐

2
<(ω′d(rm)$ω′d(rn))

2
>rmdrn 

 

is the average halfwidth of the spectrum S(ω). 
The terms in the right-hand side of Eq. (14) 

have the following physical meaning.  The first term 
corresponds to that part of measurement error, which 
is determined by the frequency fluctuations.  At this 
frequency the maximum in spectrum S(ω) is reached.  
The second and third terms are functions of halfwidth 
of the spectrum S(ω) and have the form similar to 
Eq.(4). This means that statistical uncertainty in 
measurements of the average Doppler frequency, 
determined by these terms is the result of the 
spectrum S(ω) broadening.  The forth term is the 
measure of statistical uncertainty in the frequency 
measurements of harmonic oscillations against the 
noise. Thus, in the case of a weak correlation 
(d → ∞), the behavior of measurement error in the 
average Doppler frequency has the same regularities 
as the behavior of the same parameter for the 
Gaussian statistics (d = ∞), that do not contradict 
the physical sense. 

 

3. CONCLUSION 
 
Thus, considered are two approaches to 

statistical analysis of measured frequency of a non-
Gaussian signal of a Doppler lidar using the 
perturbation methods.  The first approach uses the 
perturbation method proposed in Refs. 6 and 7 for 
analysis of a random Gaussian signal.  The second 
approach is based on renormalization of the average 
spectrum parameters. Obtained are the expressions for 
estimation of the Doppler frequency, (3) and (11), as 
well as expressions for measurement error in the 
average Doppler frequency, (5) and (12). 

When using the perturbation theory proposed in 
Refs. 6 and 7, one faces two main problems.  They 
are nonuniform approximation and difficulties in 
physical interpretation of the obtained results.  
Nonuniformity of the approximation manifests itself 
in the fact that measurement error in the average 
Doppler frequency increases unlimitedly in the case 
of a strong correlation.  Main difficulties in physical 
interpretation occur for both strong and weak 
correlation. In the case of strong correlation, the 
difficulties with interpretation follow from unlimited 
growth of the measurement error of average Doppler 
frequency, which contradicts the physical sense.  As 
was shown, in the case of weak correlation, when the 
contribution from non-Gaussian properties into the 
parameters under study is taken into account as a 
small perturbation, behavior of the second and third 
terms in the right-hand side of Eq.(5) has no form 
similar to Eq. (4), that hampers explanation of this 
result. 

Within the framework of the second approach, it is 
possible to construct the perturbation theory and to 
obtain the expressions for estimation of the Doppler 
frequency and measurement error in the average Doppler 
frequency, which meet the requirement of uniform 
approximation and allow interpretation of the results.  In 
the case of a strong correlation, the measurement error in 
the average Doppler frequency is determined by the 
parameter which is limited and corresponds to the given 
case from the physical point of view. The measurement 
error is determined by fluctuations of a harmonic 
oscillation frequency and the measure of statistical 
uncertainty in the measurement of the harmonic 
oscillation frequency against the noise.  In the case of a 
weak correlation, the measurement error in the average 
Doppler frequency is determined by fluctuations of the 
frequency, at which the maximum of spectrum S(ω) is 
reached, average halfwidth of spectrum S(ω), and the 
measure of statistical uncertainty in the measurement of a 
harmonic oscillation frequency against the noise.  

By comparing two approaches to application of the 
perturbation theory, one can conclude that they are the 

same if ω′ng is considered as an infinitely small parameter 
at limited values of other parameters in the problem 
considered. Therefore, when using the expansion (2), as 
well as the perturbation series (3) for analysis of non-
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Gaussian signals, it is implicitly assumed that parameters 

ω′ng = 0, <ωng
′2 > = 0, etc. The fact that these parameters 

are zero means that the influence of correlations between 
fluctuations of local Doppler frequency can be neglected: 
R
ωd

(rm, rn) = 0.  Consequently, such phenomena, as non-

Gaussian properties of a signal, spatial averaging of ω′d
 (rm) over the scattered volume, are not considered 
correctly or in full measure.  Strictly speaking, incorrect 
consideration of the correlation results, for example, in 
the situation when Eq. (5) can be considered reliable 
only in the case of Gaussian statistics (d = ∞). Thus, the 
approach to statistical analysis of measurements of the 
Doppler frequency based on perturbation methods6,7 does 
not result in a higher accuracy when taking into account 
non-Gaussian properties of a signal. 
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