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Two methods for estimating the unknown optical thickness of a homogeneous 

cloudy atmosphere using a ground-level downward radiance or irradiance 

measurement are presented. An iteration method incorporates an analytically-

computed first derivative of the unknown that is obtained from the FN method of 

transport theory; sample results from a sensitivity analysis for the iteration scheme 

are included. A noniterative method derived from two analytical solutions of the 

equation of radiative transfer is also given $ an asymptotic radiative transfer 

algorithm and a transport-corrected diffusion algorithm. 
 

1. INTRODUCTION 

 

In current models used to analyze global warming, 
one of the greatest sources of uncertainty arises from 
the effects of clouds.  A major contribution to this 
uncertainty is due to the absorption of radiant energy 
within the clouds, and this is directly a function of the 
total effective thickness of the cloud layer.  Thus if an 
optical thickness of clouds can be estimated from 
radiation measurements, then this source of uncertainty 
can be reduced.  We shall consider only a source-free, 
homogeneous, anisotropic scattering cloud layer with 
known albedo of single scattering and angular 
scattering (phase) function. 

In 1987 King proposed a one-detector algorithm 
that uses the backscattered radiance above an optically 
thick cloud layer to estimate the optical thickness when 
the ground albedo is known1; this algorithm was 
derived using an approximate (i.e., asymptotic) direct 
transport theory solution.  Then in 1990 the use of the 
backscattered irradiance (i.e., the angle-integrated 
partial current passing through a flat collector) was 
proposed for the same purpose2; separate algorithms 
were developed for above-cloud, middle-cloud, and 
below-cloud detector locations. 

In contrast with such explicit inverse methods that 
do not require iterative transport calculations to 
reproduce measured values, one can combine $ in an 
iterative manner $ the solutions of direct radiative 
transfer problems with measurements to yield 
simultaneous estimates of the cloud optical thickness 
and the albedo of the underlying surface.3 

Here we summarize a portion of the work done at 
the University of Washington2,3 on such inverse 

radiative transfer problems and focus on the estimation 
of only a single parameter, the optical thickness of a 
cloud above a surface of known albedo.  It will be 
assumed that either the downward radiance or 
irradiance is measured at the ground-level.  This 
portion of Refs. 2 and 3 was selected because it is 
likely to be of most use in a ground-based atmospheric 
radiation monitoring program. 

Section 2 introduces the physical model and the 
basic iterative strategy for the solution of the inverse 
problem.  Two algorithms for initiating the iteration 
procedure are given in Sec. 3; these algorithms also can 
be used without radiative transfer calculations to obtain 
good initial estimates of the optical thickness.  A 
numerical sensitivity analysis is given in Sec. 4 for a 
model cloud.  Some conclusions about the use of such 
an inverse procedure are provided in Sec. 5. 

 
2. THE ITERATIVE INVERSE METHOD 

 
Let I(τ, μ, x) be the time-independent radiance at 

position τ that is integrated over the azimuthal angle φ, 

I(τ, μ; x) = ⌡⌠

0

2π

 
 
 I(τ, μ, φ; x) dφ. 

 

The illuminated surface of the cloud is at  τ = 0, and its 
thickness  τ = x is in optical mean free paths; μ is the 
cosine of the polar angle with respect to the τ-axis.  A 
vacuum is assumed between the cloud bottom and 
where the ground-level measurements are made, so the 
albedo of the ground is effectively that at the lower 
surface of the cloud.  Other Fourier moments over the 
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azimuthal angle of the radiative transfer equation could 
be considered, but those moments of I are harder to 
measure and there is no resulting simplification in the 
algorithm.  Use of the wavelength dependence of the 
radiation would represent an additional variable that 
could be used in the inversion algorithm, but we shall 

consider only a single wavelength (not explicitly 
denoted). 

Integration over the azimuthal angle yields an 
azimuthally-symmetric radiative transfer equation for 
the radiance that can be written as4 

 

(μ ∂
τ
 + 1) I(τ, μ; x) = 

ω
2
 ∑
�=0

L

 (2 � + 1) f
�

 P
�

(μ) 
⌡
⌠

-1

1

 

 

 P
�

(μ′) I(τ, μ′; x) dμ′,            0 ≤ τ ≤ x,  (1) 

 

where ω, with ω < 1, is the albedo of single scattering 
and the phase function has been expanded in a series of 
(L + 1)  Legendre polynomials with expansion 

coefficients f
�

, � = 0 to L and f0 = 1.  The ω and all 

coefficients f
�

 are presumed known; the most important 

of the higher-order coefficients is the scattering 
asymmetry factor f1 ≡ g. 

The monodirectional incident radiation striking the 
top of the cloud layer can be written as 

 

I(0, μ; x) = I0 δ(μ $ μ0),   0 ≤ μ ≤ 1,   0 < μ0 ≤ 1,  (2) 

 

where the magnitude of the radiance I0 is assumed 
known. The boundary condition at the surface located 
at distance τ = x is taken to be that of isotropic 
(Lambertian) reflection, 

 

I(x, $ μ; x) = 2ρ 
⌡
⌠

0

1

 

 

 μ′ I(x, μ′; x) dμ′, 0 ≤ μ ≤ 1, (3) 

 

where the albedo of the ground ρ satisfies the 
constraint 0 ≤ ρ ≤ 1 and also is presumed known. 

The problem can be stated as follows: For either 
the downward, normally-directed radiance I(x, 1; x) or 

irradiance ⌡⌠

0

1

 
 
 I(x, μ; x) μ dμ at the ground, let Im

 be 

the measured value and I
c = I(x, p) be the 

corresponding calculated value, where p represents the 

known parameters for the problem: the ω, f
�
 and ρ 

values.  We wish to obtain the value of x such that the 

corresponding computed "measurement" I
c = I(x, p) is 

close to the experimental value Im. 
In order to solve this problem we define a least-

squares functional F
∼
 of x 

 

F
∼
(x, p, Im) = 

1
2
 [Ic(x, p) $ Im]2.  (4) 

  

The solution of the inverse problem is obtained by  
minimizing the value of the functional with respect to 
the unknown x.  This is solved by an iteration 

procedure using ∂x F
∼
 = 0.  At the start of the nth 

iteration the radiative transfer equation is solved using 

the known value x(n)
 and then the corresponding value 

for the functional F
∼  (n) is computed.  If the 

convergence criteria are not satisfied, then a new value 

x
(n+1) is estimated by a second-order local 

approximation to the functional at x = x(n), 
 

F
∼
(x + Δx) ≈ F

∼
(x) + Δx ∂x F

∼
 + 

1
2
 (Δx)2 ∂2

x F
∼
. 

 

The minimization of this functional yields an algebraic 
equation for Δx 

 

H Δx = $ h,  (5) 
 

where  
 

h = ∂x F
∼
 = [Ic(x, p) $ Im] ∂x I

c; (6) 
 

H = ∂2
x F

∼
 = (∂x I

c)2 + [Ic(x, p) $ Im] ∂2
x I

c ≈ (∂x I
c)2, (7) 

 

if the second-order derivative term is neglected in  
Eq. (7) so that H contains only the term of the form  

(∂x I
c)2.  Notice that this approximation becomes better 

as the iterate gets closer to the solution. 
The iterations can be assumed to have converged if 

the measurement value is obtained within a given 
relative error ε*1, 

 

ε1 = 
I
c $ Im

I
m  < ε*1, (8) 

 

or if the functional F
∼
 is becoming stationary, i.e., if for 

two consecutive iterations 
 

ε2 = 
F
∼(n) $ F

∼(n$1)

F
∼(n$1)

 < ε*2.  (9) 

 

The iteration procedure is initiated by using either 
of the two one-dimensional explicit inverse algorithms  
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discussed in the next section to obtain x(0); these 
algorithms are based on asymptotic radiative transfer 
and transport-corrected diffusion approximations and 
give a value for x(0) knowing ρ and the transmission of 
the cloud.  The transmission t(x) is the ratio of the 
downward irradiance at the surface where the 
measurements are made to that incident at the top of 
the atmosphere, i.e., 

 

t(x) = 

⌡
⌠

0

2π

 

 

dφ 
⌡
⌠

0

1

 

 

 dμμ I(x, μ, φ; x)

⌡
⌠

0

-2π

 

 

dφ 
⌡
⌠

0

1

 

 

 dμμ I(0, μ, φ; x)

=  

 

 = 

⌡
⌠

0

2π

 

 

dφ 
⌡
⌠

0

1

 

 

 dμμ I(x, μ, φ; x)

I0 μ0
 . (10) 

 
In the usual iteration procedure one numerically 

evaluates the derivatives ∂x I
c from two consecutive 

iterations and uses the results with the latest Ic values 
to estimate x, but such evaluations are often very 
sensitive to inaccuracies in the calculations of the 
derivatives.  A better approach, when possible, is to 
develop an analytical procedure for computing the 
derivatives.  For the azimuthally-independent problem 
that we consider here, the FN method5$8 is especially 
well suited for this purpose since it minimizes the 
required numerical calculations in the iteration scheme.  
This is because the matrix needed to calculate the 
emerging intensities and their derivatives, which 
depends only on the properties of the cloud, is 
independent of the iterations, thus leaving only new 
source terms to be computed with each iteration.  
Details about the use of the FN method to compute 
these derivatives are given in Ref. 3 and summarized in 
the Appendix. 

 

3. THE INITIAL ESTIMATE 
 

This section summarizes two explicit algorithms 
for estimating the optical thickness of a homogeneous 
cloud layer of uniform depth from the transmittance 
irradiance ratio.2  The first algorithm is based on 
asymptotic radiative transfer theory and follows from 
the work of King1 who used the bidirectional reflection 
function; the second is based on transport-corrected 
diffusion theory. 

The formula for estimating x using either 
algorithm is2 

 

x = 1/k ln ⎣
⎡ β
2t(x)

 
⎩
⎨
⎧

⎭
⎬
⎫

1 + ⎣
⎡

⎦
⎤1 + γ G(ρ) ⎝

⎛
⎠
⎞2t(x)

β

2 1/2

 ⎦
⎤ 
 
 (11) 

Here k is the diffusion exponent that for a weakly 
absorbing atmosphere is correlated with the similarity 
parameter s, defined in terms of the single scattering 
albedo ω and the scattering asymmetry factor g as 

 

s = [(1 $ ω)/(1 $ ωg)]1/2. (12) 

 
King and Harshvardhan10 give an approximation for k 
as 

 

k

1 $ ωg
 = 31/2 s $ 

(0.985 $ 0.253 s) s2

(6.464 $ 5.464 s)
 . (13) 

 
The parameters γ, β and G(ρ) all depend on the 

cloud single scattering albedo and the scattering phase 
function, and are different for the asymptotic radiative 
transfer and the transport-corrected diffusion 
approximation algorithms. 

For the asymptotic radiative transfer algorithm,2 
 

γ = �; (14a) 

 

β = mn K(μ0)/(1 $ ρρ*); (14b) 

 

G(ρ) = � $ mn
2ρ/(1 $ ρρ*), (14c) 

 

where �, m, n and ρ*, that are defined in Ref. 9, 

depend on the cloud optical properties. Approximate 
expressions for these functions also have been correlated 
with the similarity parameter s.  King and 
Harshvardhan10 determined that 

 

� ≈ 
(1 $ 0.681s) (1 $ s)

1 + 0.792s
 ; (14d) 

 

m ≈ (1 + 1.537s) ln ⎣
⎡

⎦
⎤1 + 1.800s $ 7.087 s2 + 4.740s3

(1 $ 0.819s) (1 $ s)2 ;

 (14e) 
 

n ≈ ⎣
⎡

⎦
⎤(1 + 0.414s) (1 $ s)

1 + 1.888 s

1/2

 (14f) 

 
while van de Hulst (Ref. 9, p. 369) found that 
 

ρ* ≈ (1 $ 0.139 s) (1 $ s)/(1 + 1.170 s). (14g) 

 
All of these functions have been shown to be relatively 
insensitive to the higher-order coefficients in the phase 
function, fn for n ≥ 2, and so the above approximations 
should be good for most clouds. 

The escape function K(μ) in Eq. (14b), defined in 
Ref. 9, also is relatively insensitive to the higher order 
coefficients in the phase function.  For this reason it 
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can be estimated by a fit based on the Henyey-
Greenstein phase function11 that depends on only ω and 
g.  Using the Dlugach and Yanovitskii12 tables of the 
escape functions for the Henyey-Greenstein scattering 
function with ω ≥ 0.8; 0.8 ≤ g ≤ 0.9, and μ ≥ 0.5, the 
following polynomial fit was developed2: 
 

K(μ) ≈ A(μ) + B(μ) (1 $ s) + C(μ) (1 $ s)2 + 
 

+ D(μ) (1 $ s)3 (14h) 

 

where the coefficients are 
 

A(μ) = $ 1.1130 + 5.3924 μ $ 9.1658 μ2 + 5.4673 μ3; 

B(μ) = 5.9551 $ 26.488 μ + 46.782 μ2 $ 25.743 μ3; 

C(μ) = $ 8.7748 + 43.229 μ $ 73.949 μ2 + 39.059 μ3; 

D(μ) = 4.3639 $ 21.230 μ + 36.285 μ2 $ 18.799 μ3. 

 

This fit agrees with the van de Hulst values for 
Henyey-Greenstein phase functions to < 3 % for 
ω ≥ 0.8, < 1.5 % for ω ≥ 0.9, and < 0.6 % for ω ≥ 0.95 
for the given ranges of g and μ. 

For the transport-corrected diffusion algorithm, on 
the other hand, the factors in Eq. (11) are the same as 
in Eq. (14) except that now 
 

γ = r(∞); (15a) 

 

β = [1 $ r2(∞)]/[1 $ ρr(∞)]; (15b) 

 

G(ρ) = 
r(∞) $ ρ

1 $ ρr(∞)
 . (15c) 

 

Here the reflected irradiance ratio r(∞) is the 
calculated ratio of the upward irradiance to the 
downward one at the top of a semi-infinite cloud, 
 

r(∞) = 

⌡
⌠ 2π

0
dφ 

⌡
⌠ 1

0
dμμ I(0, $μ, φ; ∞)

⌡
⌠ 2π

0
dφ 

⌡
⌠ 1

0
dμμ I(0, μ, φ; ∞)

 = 

 

 = 

⌡
⌠ 2π

0
dφ 

⌡
⌠ 1

0
dμμ I(0, $μ, φ; ∞)

I0 μ0
 . (15d) 

 

An approximate polynomial fit of r(∞) to the van de 
Hulst9 values for a Henyey-Greenstein phase function 
for ω ≥ 0.8, 0.75 ≤ g ≤ 0.875 and μ0 ≥ 0.5 gave2 

 

r(∞) ≈ a(μ) + b(μ) (1 $ s) + c(μ) (1 $ s)2 + d(μ) (1 $ s)3, 
 (15e) 

where the coefficients are 
 

a(μ) = 0.02101 $ 0.18048 μ + 0.20185 μ2 $ 0.09142 μ3; 

b(μ) = 1.5734 $ 2.6548 μ + 2.0400 μ2 $ 0.41333 μ3; 

c(μ) = $ 1.1479 + 3.6698 μ $ 4.2307 μ2 + 1.0236 μ3; 

d(μ) = 0.55283 $ 0.83289 μ + 1.9855 μ2 $ 0.51758 μ3. 

 
This fit agrees with the van de Hulst values to  
< 3 % for s ≤ 0.6 and < 1 % for s ≤ 0.3. 

The formula in Eq. (11) is useful for estimating 
the optical thickness x even if no iterations are 
performed.  Both the asymptotic radiative transfer 
algorithm and the transport-corrected diffusion 
algorithm give good results for optically thick clouds; 
the transport-corrected diffusion algorithm tends to be 
better for optically thin clouds but is less accurate for 
intermediate cloud thicknesses than the asymptotic 
algorithm. 

 
4. SENSITIVITY ANALYSIS 

 

Let y stand for the known parameters ω, f
�, and ρ 

and the measured value Im
.  The impact of uncertainties 

in the known parameters and of measurement errors on 
the values of the estimated parameters is given to first-
order in  Δy by 

 

Δx

x
 ≈ ∑

j

 sj 
 Δyj

yj
 . (16) 

 

The sensitivity coefficients sj, 
 

sj = ⏐(yj/x) (∂yj
 x)⏐, (17) 

 

give the multiplying factor that allows one to compute 
the relative error in x from the relative error in yj.  

Since we presume the values of ω, f
�

 and ρ are known, 

we are interested in the sensitivity coefficient for the 
optical thickness due to errors in the detector 

measurement Im. We shall investigate these sensitivities 
for measurements of the radiance I(x, 1; x) and the 

irradiance ⌡⌠

0

1

 
 
I(x, μ; x) μdμ . 

Numerical tests were done for the Haze$L phase 
function for clouds13 for a wavelength of 0.7 μm, a real 
refractive index of 1.33, and a particle size distribution of 
4.9757 × 106 r2 exp($ 15.116 r1/2) with a mean radius of 
rc = 0.07 μm.  For this function, the 83 expansion 
coefficients reported by Benassi et al.14 were used, for 
which the scattering asymmetry factor is f1 = 0.8042.  
The albedo of single scattering was taken to be 
ω = 0.99999 and the incident radiation at the top of the 
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cloud was normally directed so that μ0 = 1.  The 
convergence criteria in Exprs. (8) and (9) were set to 
ε*1 = 10$4 and ε*2 = 10$8. 

The tests of the implicit iterative procedure were 
done for a set of selected points for the cloud by 
performing an FN-calculation to obtain the simulated 

measurement I
m.  Then the convergence of the 

functional F
∼
 was tested for different assumed initial 

values x(0).  All the initial estimates were obtained by 
using the asymptotic algorithm to obtain the value of 
x(0). 

A variety of calculations were done to explore the 
convergence of the iterations for different selected values 
of x and for the two different detectors.  In all cases the 
iterations converged according to the criteria of Eqs. (8) 
and (9) within a few iterations so we conclude that the 
iteration scheme is stable when searching for the single 
variable x. 
 

 
 

FIG. 1.  Optical thickness sensitivity coefficients for a 

radiance detector measuring I(x, 1; x) for different 

surface albedo values ρ and optical thicknesses x.  
(From Ref. 3.) 

 

Figures 1 and 2 show the sensitivities s for different 
values of the surface albedo ρ for the two detectors.  (The 
figures were constructed from linear interpolation of 
calculated results for a grid of 24 x and 6 ρ values, so the 
curves are only approximately correct.)  Such graphs can 
be used to define the useful retrieval region in the x space 
in terms of the maximum admissible error in the 
estimated value of x, εx = Δx/x, and the maximum error 

of the detector, εI = ΔI
m/I

m
.  For instance, if we want 

to estimate x within 20%, εx = 0.2, and if the precision in 
the detector is 2%, εI = 0.02, then the retrieval region is 
defined by the area under the curve for sensitivity 
coefficient s = 10 shown in bold. 

From the figures it is seen that for the same 
precision in the measurements, the retrieval region for 
measurements with the normally-directed radiance 
detector is much larger than that for the irradiance 
detector. However, the transmitted signal for the radiance 

detector will be much smaller, which could actually lead 
to larger errors in the measurement. 
 

 
 

FIG. 2.  Optical thickness sensitivity coefficients for 

an irradiance detector ⌡⌠

0

1

 
 
I(x, μ; x) μdμ for different 

surface albedo values ρ and optical thicknesses x. 
(From Ref. 3.) 

 

5. CONCLUSIONS 
 

An implicit inverse method has been presented for 
estimating the optical thickness x of a cloud layer and 
the feasibility of the proposed inversion technique has 
been demonstrated; this is a special case of an iteration 
approach to estimate x and ρ.  An azimuthally-
independent plane-parallel problem was assumed by 
assuming the top of the cloud layer to be uniformly 
illuminated and the detector to measure the ground-
level, normally-directed radiance or irradiance.  For 
such a problem the iteration procedure can be 
implemented using the FN method so that the least 
squares minimization can be done with analytically 
computed derivatives obtained with the FN method.  
For an azimuthally-dependent problem the FN method 
becomes more time consuming, but the iteration 
procedure could still be used with a different method 
for solving the direct problem, such as the discrete 
ordinates method; however, then the derivatives would 
need to be computed numerically. 

Both the asymptotic radiative transfer algorithm 
and the transport-corrected diffusion algorithm give 
good approximate results for optically thick clouds; the 
transport-corrected diffusion algorithm tends to be 
better for optically thin clouds but is less accurate for 
intermediate cloud thicknesses than the asymptotic 
algorithm. 

 

APPENDIX: THE FN METHOD 
 

We follow closely the work of Devaux, Siewert, 
and Yuan15 and express the outgoing radiances at the 
surfaces of the medium as series expansions of the form 
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I(0, $ μ) = p(μ) • a + ρΦ(x) exp ($ x/μ),   0 ≤ μ ≤ 1, 
 (A1a) 

 

I(x, μ) = p(μ) • b + F(μ) exp ($ x/μ),   0 ≤ μ ≤ 1,
 (A1b) 

 

where  

 

p(μ) = {Pn (2μ $ 1), n = 0, N};  

 

a = {(ω/2) an, n = 0, N}; b = {(ω/2) bn, n = 0, N}  
 
and 

Φ(τ) = 2 
⌡
⌠

0

1

 

 

 μ F(μ) exp ($ τ/μ) dμ. (A2) 

 
The FN equations follow from the system of 

integral equations 
 

⌡
⌠

-1

1

 

 

μφ(ξ,μ) I(0, $ μ;x) dμ + exp ($ x/ξ) × 

× 
⌡
⌠

-1

1

 

 

μφ($ ξ,μ) I(x, μ;x) dμ = 0, (A3a) 

 

⌡⌠

-1

1

 
 
μφ(ξ,μ) I(x, μ;x) dμ + exp ($ x/ξ) × 

 

× ⌡⌠

-1

1

 
 
μφ($ ξ,μ) I(0, $ μ;x) dμ = 0, (A3b) 

 
where φ(ξ, μ) are the elementary solutions of the 
radiative transfer equation16,17 and ξ is either in the 
interval [0, 1] or a discrete eigenvalue νi, 
i = 0, 1, 2, ..., k $ 1, that can be calculated using a 
procedure such as that in Ref. 18.  If Eqs. (A1) are 
substituted into Eqs. (A3) there follows19,20 a set of 
linear equations for the 2(N + 1) unknowns an and bn,  
that are solved by using ξ = νi, i = 0, 1, ..., k $ 1, plus 
the remaining collocation points i = k, k + 1, ..., N, 
which are chosen to be the zeros of the Chebyshev 
polynomial of the second kind UN+1$k(2x $ 1). 

The FN equations can be written in the form 
 

R z = q, (A4) 
 

where z = (a, b); R is the matrix  

 

R = 
⎣
⎢
⎡

⎦
⎥
⎤B DA

DA B
 $ ρ 

⎣
⎢
⎡

⎦
⎥
⎤0 DB̂

0 Â
 (A5) 

 

and D is the diagonal matrix {exp ($ x/ξi)}.  The 
matrices A and B have elements 
 

An(ξi) = $ Bn($ ξi) =  
 

= (2/ξi)⌡⌠

0

1

 
 
 μ Pn(2μ $ 1) φ($ ξi, μ) dμ, 

 

which can be calculated using recursion relations15; also 
 

B̂n(ξi) = (δn 0 + δn1/3) B0(ξi); 
 

Ân(ξi) = (δn 0 + δn1/3) A0(ξi). 

 

The source vector q = (qa, qb) has elements consisting 
of the nonsingular integrals 

 
qa(ξi) = e$x/ξi qb($ ξi) =  
 

2 (ω ξi)
$1

⌡
⌠

0

1

 

 

 {F(μ) φ($ ξi, μ) [1 $ e$x/ξi e$x/μ] + 

 

+ ρ Φ(x) φ(ξi, μ) [e$x/ξi $ e$x/μ]} μdμ. (A6) 

 
To perform the minimization procedure we need to 

compute the values of ∂x I
c.  For example, from 

Eq. (A1) these values are obtained for the detector  

⌡⌠

0

1

 
 
I(x, μ; x) μdμ as 

 

 

∂x I
c = ∂x a 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

⌡
⌠

0

1

 

 

p(μ) μdμ  + ρ∂x 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

φ(x) 
⌡
⌠

0

1

 

 

e$x/μ μdμ  ,    

 

τ = 0 (A7a) 
 

and 

∂x I
c = ∂x b 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

⌡⌠

0

1

 
 
p(μ) μdμ  + ∂x 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 ⌡⌠

0

1

 
 
F(μ) e$x/μ μdμ  ,    

 

τ = x. (A7b) 
 

The values of ∂x a and ∂x b are obtained from the 
system of equations 
 

R ∂z/∂xk = ∂q/∂xk $ ∂R/∂xk z, (A8) 
 
where 
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∂R/∂x = 
⎣
⎢
⎡

⎦
⎥
⎤0 D′A

D′A 0
 $ ρ 

⎣
⎢
⎡

⎦
⎥
⎤0 D′B̂

0 0
 ; (A9a) 

 

∂R/∂ρ = $ 
⎣
⎢
⎡

⎦
⎥
⎤0 DB̂

0 A′
 (A9b) 

 

and D′ = diag {$ exp ($ x/ξi)/ξi}. 
 

Since the inverse matrix R$1 is also required for 
the computation of z, only the relatively small 
additional numerical effort to compute ∂q/∂xk will be 
necessary to estimate a new iterate. 
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