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The effect of stimulated Brillouin scattering (SBS) in transparent spherical 

microparticles is considered theoretically.  The resonance properties of particles, 
namely, Q-factor and the resonance contour width, are found to influence 
significantly the threshold characteristics of the SBS process.  We have made 
numerical calculations of the overlapping coefficient of interacting optical pumping 
fields and the SBS inside a particle determining the magnitude of the SBS 
threshold intensity.  The magnitude of the coefficient is shown to be dependent on 
the accuracy of correspondence of interacting field space profiles. 

 

1. INTRODUCTION 

 

The processes of stimulated light scattering in 
dielectric microparticles, such as stimulated Raman 
scattering (SRS), stimulated Brillouin scattering 
(SBS), and stimulated fluorescence have recently been 
the subject of an intensive study throughout the 
world.1$16,19,21,22  These phenomena are of particular 
interest because a spherical particle is an optical 
microresonator, whose quality is sufficiently high and 
may be as much as 108 (Ref. 2).  In this case a 
spherical particle can be used as a unique optical 
instrument suitable for solving many problems 
traditional both for the intracavity spectroscopy4 and 
for the physics of aerosols.1 

Among the nonlinear effects of stimulated light 
scattering by particles the SRS effect is of a primary 
practical interest because of a significant spectral 
separation of the generation lines.  A large number of 
experimental and theoretical studies have been devoted 
to this phenomenon (a brief overview of the papers can 
be found in Ref. 22).  At the same time it has been 
found experimentally that SRS in particles is 
frequently accompanied by other nonlinear process, 
which, as a rule, occurs well before the SRS and may 
result in a decrease of the SRS power threshold.2,9,13,14  
The SRS threshold intensity in the case of such a 
œcascadeB excitation decreases by a factor of 3 to 5.  
The observed effect is associated with the fact that the 
SBS threshold intensity is lower than the SRS 
threshold intensity due to higher amplification factor of 
the process.  Therefore in some cases the SBS wave 
occurs well before the SRS wave and then it is a more 
effective source for pumping the SRS process than the 
incident radiation. 

In this connection it is important to investigate the 
effect of resonance properties of transparent particles, 

namely, their Q-factor and the resonance contour 
spectral width, on the efficiency of spatial power 
redistribution of interacting optical fields affecting the 
SBS and SRS threshold intensity that is the goal of this 
work.  Besides, the paper describes the basic aspects of 
the theory of SBS in spherical particles as well as the 
necessity is demonstrated to take into account the 
spatial structure of interacting acoustic and optical 
fields when studying the SBS in microresonators. 

 
2. BASIC RELATIONS 

 

Theoretical investigations along with a numerous 
experimental papers have shown that the initiation of 
stimulated light scattering in a spherical particle is 
conditioned by the existence of high-Q resonance 
electromagnetic modes capable of essentially increasing 
spontaneous scattering wave under conditions of phase 
synchronism.  At present the following theoretical 
model of the SBS in a spherical particle has been 
formulated.14 

As a result of electrostriction effect due to 
interaction of radiation with the particle matter 
throughout the particle volume there appear 
spontaneous inelastic light scattering, which is most 
intense in the focusing areas of the internal optical field 
(in Fig. 1). 

Some waves from spontaneous scattering spectrum 
escape from a drop, while some waves propagate along 
its surface due to total internal reflection.  On their 
way along wave propagation path these waves may 
experience both amplification and attenuation due to 
the radiation absorption and radiation escape through 
the surface. When the frequency of a wave from the 
scattering spectrum coincides with the frequency of a 
natural high-Q electromagnetic mode of a particle 
(several closely adjacent modes in the case of 
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multimode process) the amplification of a spontaneous 
Stokes wave exceeds its net losses and the process of 
stimulated scattering starts in the particle. 
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FIG. 1.  A schematic diagram illustrating a model of 
SBS process in a spherical particle. 
 

From the viewpoint of field formation in a 
resonator the field of stimulated scattering may be 
considered as a standing wave formed by superposition 
of electromagnetic waves propagating along opposing 
directions along a drop spherical surface provided that 
condition of phase synchronism holds 

ωs = ωL $ ωac;  ks = kL $ kac, 

where ωL, kL, ωs, ks are the frequencies and wave 
vectors of the incident and scattered electromagnetic 
waves, respectively; ωac, kac are the frequency and the 
wave vector of striction acoustic oscillations. 

The initial equations for theoretical analysis of the 
SBS process in a particle are nonhomogeneous Maxwell 
equations where the nonlinear part PN(r, t) of the 
medium polarization P(r, t), induced by the pumping 
field and closely related to a nonlinear scattering 
process being studied, is a field source for Raman-
scattered waves 

 

rotE(r, t) = $ 
1
c
 
∂H(r, t)
∂t  ;  divD(r, t) = 0; 

 

rotH(r, t) = 
1
c
 
∂D(r, t)
∂t  + 

4πσ
c

 J(r, t); 

 

divH(r, t) = 0; 
(1) 

 

D(r, t) = E(r, t) + 4π P(r, t); J(r, t) = σE(r, t). 

 
Here E and H are the electric and magnetic field 
vectors inside a particle, respectively; D is the electric 
bias vector; J is the polarization current density; c is 
the speed of light in vacuum; σ is the particle matter 
specific conductance.  At the sphere boundary it is 

necessary that the condition holds of the field 
tangential components continuity. 

This system of equations is known to be 
transformed to a wave equation for the electric field 
strength vector in a particle E(r, t) 

 

rot rot E(r, t) + 
1

c2 
∂2E(r, t)

∂t2
 + 

4πσ
c2  

∂E(r, t)
∂t  =  

= $ 
4π
c2  
∂2

∂t2
 PN(r, t). (2) 

 
It should be noted here that in the right-hand side 

of this equation there is the value of nonlinear 
polarization of a medium since we consider only the 
SBS process connected with a certain dipole transition. 

Since electric field in a particle is a sum of fields 
at the fundamental frequency ωL (pumping frequency) 
and at the scattered wave frequency ωs: 

 

E(r, t) = EL(r, t) + Es(r, t), (3) 
 

where 
 

EL(r, t) = Re{E
~

L e$iωLt} = 
1
2
 E
~

L e$iωLt + 

+ complex conjugate (c.c.), 

Es(r, t) = Re{E
~

s e
$iωst} = 

1
2
 E
~

s e
$iωst +  

+ complex conjugate (c.c.), 
 

then the wave equation (2) is split into two related 
equations for the fundamental and scattered waves 

 

rot rot EL(r, t) + 
1

c2 
∂2EL(r, t)

∂t2
 + 

4πσ
c2  

∂EL(r, t)

∂t  = 

= $ 
4π
c2  
∂2

∂t2
 PL(r, t); 

rot rot Es(r, t) + 
1

c2 
∂2Es(r, t)

∂t2
 + 

4πσ
c2  

∂Es(r, t)

∂t  = 

= $ 
4π
c2  
∂2

∂t2
 Ps(r, t). (4) 

 

Here 
 

Ps = 
1
2
 P
~

s e
$iωst + c.“. = 

= χ(3)(ωs) (E
~

L E
~

L
*) E

~
s e

$iωst + c.“., 

PL = 

1
2
 P
~

L e$iωLt
 + c.“. = χ(3)(ωL) (E

~
s E

~
s
*) E

~
L e$iωLt + c.“;  

 

χ(3) is the nonlinear dielectric susceptibility of the 3rd 

order; E
~

L and E
~

s are the amplitudes of the incident 
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field and the field of SBS wave, respectively; 
PN = PL + Ps.  Note that formally there may appear 
infinitely many scattering waves with the frequencies 
ω = ωL ± nωac, n = 1 ... ∞.  However, we shall consider 
only the first Stokes wave with ωs = ωL $ ωac as being 
the most intense one.  In this case the permutation 

symmetry of χ(3)(ωs) = {χ(3)(ωL)}* is valid.18 
Equations for the field (4) are supplemented by an 

equation for the pressure increase in the medium p(r, t) 
 

∇2 p(r, t) $ 
1

c2
s

 
∂2p(r, t)

∂t2
 + 

2 ΓB

c2
s

 
∂p(r, t)

∂t  = 

= 
γ
8π∇

2⏐E(r, t)⏐2, (5) 

 

p(r, t = 0) = 0 

and by the relationship between the pressure and 
nonlinear polarization PN of the medium 
 

PN(r, t) = γ/(4πc2
s ρa) p(r, t) E(r, t). 

 
Here cs and ΓB are the velocity and the attenuation 
factor of hypersound (the line halfwidth of spontaneous 
Brillouin scattering); γ is the electrostriction constant; 
ρa is the particle matter density. 

The boundary condition for (5) is the generalized 
form of the Laplace equation19: 

 

{ p(r, t)⏐a $ 
γ
8π⏐E(r, t)⏐a⏐2

 $ βs (
1

R1(r)
 + 

+ 
1

R2(r)
 $ 

2
a0

) + f} ni = η (
∂vi

∂xk
 + 
∂vk

∂xi
) nk, 

 

where R1(r) and R2(r) are the main radii of the 
particle surface curvature at a point with the radius-
vector r; η and v denote the dynamic viscosity and the 
liquid velocity; xi,k denotes the coordinates; ni,k 
denotes the vector components of the outward normal 
to the particle surface nr; βs is the tension coefficient of 
liquid surface; a0 is the particle radius; 

 

f(r, t) = (εa $ 1)/(8π) [(εa $ 1) (E(r, t)•nr)
2 + 

 

+ ⏐e(r, t)⏐2] 

 
is the jump in the normal component of electromagnetic 
field tension at the liquid surface20; εa is the linear part 
of the dielectric constant of a particle substance.  The 
symbol ⏐a denotes that the values of corresponding 
quantities are taken at the particle boundary. 

Since we consider the field formation in a volume 
optical resonator, that is in a transparent spherical 
particle, then in what follows we represent the solution 
of wave equations for the fields (4) in the form of its 
expansion over normal electromagnetic vibrational 

modes of the particle-resonator Enl(r) having natural 
frequencies ωnl.  For example, for the Stokes wave 

 

Es(r, t) = ∑
n;l

 Anl(t) Enl(r), (6) 

where the coefficients Anl(t) satisfy the equations: 
 

d2
 Anl(t)

dt2
 + 4πσ 

d Anl(t)

dt
 + ω 2

nl Anl(t) = 

 

= $ 4π ⌡⌠
V

 
 
Enl(r′) 

∂2 Ps(r′, t)

∂t2
 dr′. (7) 

Integration in Eq. (7) is made over the particle volume. 
The expansions over eigenfunctions, similar to (6), 

are also made for the nonlinear polarization PN(r, t) 
and pressure p(r, t).  In the latter case, 

 

p(r, t) = ∑
n;l;m

 ℘nlm(t) o nlm(r). (8) 

 
Solution of the set of equations (7) coupled with 

equations (4) and corresponding initial and boundary 
conditions makes it possible to comprehensively 
describe the process of stimulated scattering in a 
particle. 

Note that in (6) the system of partial TE and TH 
waves (or their linear combination) is used as 
eigenfunctions, whose type follows from the Mie 
solution to the problem of diffraction of a plane 
electromagnetic wave on a sphere15: 

 

Enl(r) = 

= 

⎩
⎨
⎧bn(xa) Mnl(r) ψn(ka r) for TE-wave;

1/ka cn(xa) ∇ [Mnl(r) ψn(ka r)] for TM-wave,
 

 
where ka is the wave number inside a particle; bn(xa), 
cn(xa) are the amplitudes of partial waves; Mln(r) are 

the spherical vector-harmonics; xa = 
2πa0

λL
 is the particle 

diffraction parameter. 
Under conditions when no pressure increase occurs 

at the particle surface, p(r, t)⏐a ≈ 0, that is a good 
approximation when studying the SBS,15 the functions 
o nlm(r), have the view 

 

o nlm(r) = Cnm ψn (αnm r/a0) Ynl(θ, ϕ),  

 

where Cnm = 2/[a0
3
 ψn+1 (αnm)2) are the normalization 

constants; αnm is the mth zero of the spherical Bessel 
function ψn; θ and ϕ are the spherical coordinates. 
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The eigenfunctions obey the orthogonality 
conditions 

 

⌡⌠
V

 
 
Enl(r) E *

km(r) dr′ = δnk δlm;  

 

⌡⌠
V

 
 
o nlm(r) o *

kij(r) dr′ = δnk δli δmj. (9) 

 
3. SBS THRESHOLD IN A SPHERICAL PARTICLE 

 

Let us write the energy balance equation in a 
particle at the scattered wave10 frequency: 

 

dWs

dt
 = Pg $ (Pa + Pr). (10) 

 

In Eq. (10) the following designations are introduced; 
Ws is the electromagnetic field energy averaged over 
the oscillation period accumulated in the particle 
volume; Pr is the mean power of radiation losses (the 
radiation escaped through the particle surface); Pa is 
the mean power of thermal losses inside the particle; 

Pg = $ 

1
2

 ⌡⌠
V

 
 
Re {

∼
E*

s  
∂ 
∼
Ps

∂t } dr′ is the mean power of the 

Stokes wave sources; V is the particle volume. 
In what follows we introduce the concept of Q-

factor of the droplet resonator at the resonance mode 
frequency ωnl supporting the SBS process (ωnl = ωs): 

 

Q = ωs Wm/(Pa + Pr), 

 
where Wm is the electromagnetic field energy averaged 
over the oscillation period of a mode.  Then the law of 
energy conservation for the Stokes wave in the particle 
may be written as 

 

dWs

dt
 = Pg $ ωs 

ym Ws

Q
 , (11) 

 
where the ratio Wm/Ws is denoted as ym. 

It should be noted that in open resonators, such as 
a transparent spherical particle, the fields of their 
eigenmodes are not limited by the resonator surface and 
extend over it.  For this reason we always have ym > 1.  
However, as calculations21 showed in the majority of 
cases the coefficient ym is approximately equal to unity 
for high-Q eigenmodes of spherical particles and its 
deviation from unit is 2$5%.  In the subsequent 
calculations it is taken to be ym = 1. 

Let us now consider the component determining 
the power of a Stokes wave source.  In the framework 
of the theoretical model accepted of the process for 

nonlinear polarization at the frequency ωs the following 
expression is used: 

 

∼
Ps = χ(3) (

∼
EL 

∼
E*

L)
∼
Es. (12) 

 

By assuming that time behavior of complex 
amplitudes is slower than that of the exponential 
factor, i.e., according to the so-called approximation of 
slowly varying amplitudes, this expression is modified 
for the source power of inelastic scattering wave as 
follows: 

 

Pg = $ 
1
2
 ⌡⌠
V

 
 
Re ⎩

⎨
⎧

⎭
⎬
⎫∼

E*
s  
∂ 
∼
Ps

∂t  dr′ = 

 

= $ 
ωs

2
 ⌡⌠
V

 
 
Im {χ(3)} (

∼
Es 
∼
E*

s) (
∼
EL 

∼
E*

L) dr′. (13) 

 
Taking into account the fact that the Stokes wave 

amplification factor gs at stimulated scattering is 

related to the nonlinear medium susceptibility χ(3) as 
follows: 

 

gs = $ 32π2 ωs/(c2εa) Im {χ(3) }, 

 

the expression (13) reduces to the form 
 

Pg = 
c2

 εa
64π2 ⌡⌠

V

 
 
gs (

∼
Es 
∼
E*

s) (
∼
EL 

∼
E*

L) dr′ = 

 

= gs ⌡⌠
V

 
 
Is(r) IL(r) dr′, 

 

where the radiation intensity 
 

I(r) = cna/(8π)(
∼
E 

∼
E*) 

 

and na = εa is the medium refractive index. 
The condition for the SBS to occur is determined 

as 
 dWs 

dt
 = 0, and, consequently, from Eq. (11) we 

have 
 

ωsna/(cQ) ⌡⌠
V

 
 
Is(r) dr′ = gs ⌡⌠

V

 
 
Is(r) IL(r) dr′ . 

 

The Stokes wave intensity Is and the pumping 
wave intensity IL inside a particle may be represented 
as products, where the amplitude independent of space 
coordinates is separated out in the form of a factor 
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IL = IL0 BL(r); Is = Is0 Bs(r), 

 

where BL and Bs are dimensionless factors of 
inhomogeneity in the internal optical fields.  Since IL0 
is actually the intensity of a wave incident on the 
particle, the threshold pumping radiation intensity, 
above which the stimulated scattering occurs is 

 

It = 2π na/[gs Q(ωs) λs B“(ωL, ωs)], (14) 

 
where λs is the wavelength of scattered light; 
Bc(ωL, ωs) is the integral coefficient that allows for the 
spatial overlap of interacting optical fields inside the 
particle22: 

 

B“(ωL, ωs) = 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
V

 
 
Bs(r) dr′

$1

⌡⌠
V

 
 
Bs(r) BL(r) dr′. 

 

As follows from this expression, the coefficient Bc 
or, in fact, the efficiency of the optical field interaction 
in the particle is directly proportional to the pumping 
field intensity (through the coefficient BL).  The closer 
is coincidence of the interacting fields the higher is the 
value of the coefficient Bc. It is evident that the 
maximum value of Bc should be expected in the cases 
when both the pumping field and the SBS field are 
simultaneously in resonance with a natural 
electromagnetic mode of a particle, i.e., in the so-called 
double resonance.  Moreover, since the frequency shift 
of a SBS wave, Δω = ωL $ ωs, is rather small both 
spectral lines may be within one and the same 
resonance contour ωL ≈ ωs = ωnl.  This situation is 
schematically shown in Fig. 2a, where the halfwidth of 
the resonance curve of a particle natural mode is 
denoted as Γ = xa/Q. 

 

 
a b 

 

FIG. 2.  A schematic diagram of relative position of 
the pumping line and SBS contours in the case of 
double (a) and single (b) resonances.  A shaded 
contour is a resonance curve of one of normal modes of 
a particle. 
 

As known the value Γ for the near surface natural 
modes decreases6 with increasing particle size and, hence, 

at Δω ≥ Γ the condition of double resonance will be 
violated (Fig. 2b) that results in a decrease of the 
coefficient Bc. 

The results of numerical calculations of the 
dependence b c(xa) are shown in Fig. 3.  Different 
curves in Fig. 3 correspond to different orders of 
resonance modes supporting the SBS such a separation 
becomes clear if one allows for the fact that the modes 
of different numbers and orders (i.e., with different set 
of indices n and l) can have close values of the 
diffraction resonance parameter xa, and in this case the 
magnitude of Q-factor of these modes, namely, the 
quantity Bc, are quite different.  However, the question 
on which of these mode is basic for the Stokes wave 
amplification is still to be addressed, within the 
theoretical model considered. 

Figure 3 shows that the values of the coefficient 
Bc can either decrease or increase with the growth of 
the particle diffraction parameter depending on the 
order of the resonance chosen.  This fact points to 
violation of the double resonance in the first case and 
to the growth of the efficiency of field interaction in 
the second case.  For a comparison Fig. 3 also presents 
calculated values of Bc(xa) for the SRS process in 
water drops.  In these calculations we used the most 
intense band of stretching vibrations of water, with 
Δω = 3500 cm$1 that provides for the only resonance 
and only for the SRS field.  As is seen from Fig. 3 the 
values Bc for the SRS process, are much lower than 
that for SBS.  This values, in fact, show the lower 
level to which the magnitude Bc tends with increasing 
particle size (xa >> 1). 
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FIG. 3.  The coefficient of spatial overlapping of 
optical fields in water droplets, Bc, as a function of xa 
for the case of SBS (curves 1 to 3) and SRS (4). 
Calculations for SBS have been made using the normal 
modes TE1l (curve 1), TE2l (curve 2), and TE3l (curve 
3) of particles. 

 
As follows from the above the efficiency of 

interaction between optical fields strongly depends on 
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the ratio between the values Δω and Γ.  Therefore it is 
worth considering the dependence of coefficient Bc on 
the parameter Δω/c.  This dependence obtained by 
averaging the results over more than twenty different 
combinations of mode indices n and l, is depicted in 
Fig. 4.  The ascending portion of the curve in Fig. 4 
corresponds to double resonance (Δω << c) and shows 
the increase in Q-factor of normal modes of the particle 
with increasing particle size (see Fig. 5).   

In this case the value BL grows and, as a 
consequence, the value of the spatial overlapping 
coefficient Bc increases.  Narrowing of the resonance 
contour and subsequent break of the double resonance 
define the descending curve of the dependence 
b c(Δω/c). 
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FIG. 4.  The dependence of field spatial overlap 
coefficient Bc on the parameter Δω/Γ in water drops. 
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FIG. 5.  Q-factor of Qnl resonances of different orders 
internal optical field depending on the diffraction 
parameter of water drops xa (the absorption coefficient 
ia = 10$8). 

4. NONLINEAR SUSCEPTIBILITY OF χ(3) IN 

THE SBS PROCESS IN MICRORESONATORS 

 
Equation (14) is used to calculate the threshold of 

stimulated scattering in particles of different types 
(SRS, SBS, stimulated fluorescence), however, the 
characteristics of each specific process are determined 
by the gain factor gs for a scattered wave, or more 
specifically, by a particular type of nonlinear 
susceptibility of the medium χ(3).  In addition, the 
resonance characteristics of particles manifest 
themselves in this parameter.  Let us now consider the 
parameter χ(3) in a more detail for the process of SBS 
in transparent particles. 

As was noted above, the influence of light on 
medium results in additional nonlinear polarization of 
the medium according to Eq. (12).  Introducing the 

complex pressure amplitude as p(r, t) = 
1
2
 p~ e$iωact + 

+ c.“., the nonlinear polarization at the scattered wave 
frequency ωs = ωL $ ωac may be written as 

 

Ps(r, t) = γ p~*(r, t) 
∼
EL e$iωst/(8π “2

sρa) + c.“., 

 

from where the expression is derived for nonlinear 
susceptibility at SBS 

 

χ(3)(ωs) = γ p~* (
∼
EL
* 
∼
Es)

$1/(8π “2
sρa) . (15) 

 

Let us now return to the pressure equation (5), 
and let a solution to it be written as a series expansion 
over the eigenfunctions of the droplet-resonator (8).  
By substituting Eq. (15) into Eq. (5) and integrating 
over the droplet volume, taking into account the 
orthogonality of eigenfunctions according to condition 
(9), we obtain the equation for the expansion 
coefficients 

 

∂2℘nlm

∂t2
 $ 2cb 

∂℘nlm

 ∂t  $ Ω2
nlm ℘nlm = 

= $ e$iωact 
γ “

2
s

8π  ⌡⌠
V

 
 ∇2 (

∼
E s
* 
∼
EL) o *

nlm dr′, (16) 

 

where Ωnlm denotes the natural acoustic frequencies of 
the resonator. 

Because in the investigation of threshold 
characteristics we deal with the steady state fields, 

whose amplitudes 
∼
E and p~ do not depend on time, then 

for each of the fields EL and Es the wave equations (4) 
reduce to the Helmholtz equation and solution (16) 
takes the form 

 

℘nlm = 
γ “2

s k
2
L

4π  
e$iωact

ω 2
ac $ Ω 2

nlm + 2i cB ωac

 × 
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× ⌡⌠
V

 
 
(
∼
E s
* 
∼
EL) o *

nlm(r′) dr′. (17) 

 

Having multiplied Eq. (18) by Πnlm and summing 
over all normal acoustic modes of the resonator we 
obtain the law of pressure variation in a droplet in the 
case of the SBS process 

 

p(r, t) = 
γ “2

s k
2
L

4π  ∑
n;l;m

   
e$iωact

ω 2
ac $ Ω 2

nlm + 2i cB ωac

 × 

× o nlm(r) ⌡⌠
V

 
 
(
∼
E s
* 
∼
EL) o *

nlm(r′) dr′. (18) 

 
The quantity characterizing the frequency shift of 

a generated acoustic wave from the resonance is 
 

ω 2
ac $ Ω2

nlm + 2i cB ωac = 2i cB ωac  (1 $ i dnlm) ≡ Dnlm, 

 

where dnlm = [(ωac $ Ωnlm)/ωac] [Ωnlm/cB(Ωnlm)].  Let 

us denote Q ac
nlm = Ωnlm/cB(Ωnlm), that is the droplet 

Q-factor for a normal acoustic mode.  Then we have, 
for the reduced frequency shift 

 

dnlm = Q ac
nlm (ωac $ Ωnlm)/ωac . 

 

As earlier we present the complex amplitude 
∼
EL of 

the field as a product of a time-dependent amplitude 

and a spatial function: 
∼
EL(r, t) = EL(t) bL(r).  Similar 

expression may be written for 
∼
Es.  Note that earlier 

introduced function of the internal field inhomogeneity 
BL(r) is related to bL(r) by an obvious relationship 

 

BL(r) = 

∼
EL 

∼
EL
*

EL EL
*
  = bL(r) bL

*(r). 

 

As a result we obtain from Eq. (18) the following 
formula: 

 

p(r, t) = e$iωact 
γ “2

s k
2
L

4π  EL E s
* × 

 

× ∑
n;l;m

 
o nlm(r)

Dnlm(r)
 ⌡⌠
V

 
 
bL(r′) b s

*(r′) o *
nlm(r′) dr′. 

 
By denoting the integral in the right-hand side of 

the equation as 
 

Knlm = ⌡⌠
V

 
 
bs(r′) bL

*(r′) o nlm(r′) dr′, (19) 

we obtain the final expression for pressure inside a 
particle 
 

p(r, t) = e$iωact 
γ “2

s k
2
L

4π  EL E s
* ∑

n;l;m

 
o nlm(r) K *

nlm

Dnlm(r)
 . (20) 

 

Taking into account this result one obtains, from 
(15), the expression for the medium nonlinear 
susceptibility characteristic of the SBS process at the 
scattered wave frequency 

 

χ(3)(ωs) = 

γ2 ω
2
L n2

a

16π2
 “2ρa bs(r) bL

*(r)
 ∑
n;l;m

 
o nlm(r) K *

nlm

Dnlm(r)
 . (21) 

 

In the case of an acoustic resonance ωac = Ωnlm, 
when the frequency difference dnlm equals zero, the 
summation in the right-hand side of Eq. (23) vanishes, 
and we have 

 

χ(3)(ωs) = $ 
i γ2 ω

2
L n2

a

32π2 “2ρa ωac Γ(ωac)
 × 

 

× 

o (r; Ωnlm = ωac) K*(ωac)

bs(r) bL
*(r)

 =  

= χ(3)
∞

 
o (r; Ωnlm = ωac) K*(ωac)

bs(r) bL
*(r)

 , 

 

where χ(3)
∞

 denotes the nonlinear susceptibility of an 
extended medium in the SBS process (optical cell).17 

As can be seen from the expression derived, 
specific features of stimulated scattering formation on 
the acoustic waves in a spherical particle is the 
interference among spatial structures of the interacting 
pumping fields, acoustic, and scattered waves.  The 
integral coefficient Knlm, introduced by Eq. (19), 
allows for this mutual influence, and its value strongly 
depends on the resonance characteristics of a particle.  
At stimulated scattering in an extended medium the set 
of eigenfunctions Enl(r) and o nlm(r) is replaced by 
plane waves.  In this case no summation over indices is 
needed15 

 

Enl(r)⏐L ~ e$i(kLr); Enl(r)⏐s ~ e$i(ksr);  

o nlm(r) ~ e$i(kacr). 

In the case of SBS effect in a counter wave 

Knlm ~ e$i(kL$ks$kac) r = 1. 

 
The numerical calculations of the coefficient Knlm 

are beyond the scope of this paper, and will make the 
subject of other studies. 

The threshold values of It for the SRS and SBS 
processes in water droplets of different radii (the 
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absorption index ia = 10$8), calculated using (14), are 
shown in Fig. 6. 
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FIG. 6.  Theoretical dependence of the SRS intensity 
threshold (1) and of SBS (2$4) in water drops of 
different size22: single (1, 2), double (3), and triple 
resonances of SBS (4).12  The dashed curve denotes 
the optical breakdown threshold of water drops.9 

 
The dashed line in the figure shows the optical 

breakdown threshold of water droplets.9  For SBS 
three situations were considered: single resonance 
(only for the Stokes wave Δω/c ≥ 0.5), double 
resonance (simultaneously for the pumping wave and 

scattered wave Δω/c ∼ 10$2) and triple resonance 
(for pumping, scattered and acoustic waves).  In this 
case the value of the SBS intensity threshold is 
anomalously low because the acoustic wave induced 
by the pumping radiation falls into one of the 
acoustic resonances of the particle thus resulting in a 
sharp rise of the amplitude of the dielectric constant 
perturbation in the medium and, consequently, in a 
nonlinear polarization.  Similarly triple resonance 
occurs very rarely and, evidently, it can be obtained 
only at simultaneous excitation with laser and 
acoustic waves of corresponding frequencies.12  
Figure 6 shows that the SBS threshold intensity is 
lower than the SRS threshold intensity.  As noted 
above, this is connected with a larger value of the 
SBS gain factor (gs ≈ 5⋅10$3 cm/MW) as compared 
with the corresponding value for the SRS process 

(gs ≈ 10$3 cm/MW18).  As to the dependence of It 
on the droplet radius, one can see from the figure 
that the threshold intensity sharply increases with the 
droplet size decrease due to similar drop in the Q 
factor of small particles for radiation.  At xa ≥ 100 
the value of It is practically independent of the 
radius of liquid particles because of a limited rise of 
the resonance Q-factor due to the absorption losses in 
liquid.  For the particles of moderate size (xa ≤ 40) 
the optical breakdown inside the particles may 

prevent the initiation of the effects of stimulated 
light scattering. 

 

5. CONCLUSION 
 

Let us now formulate the main results of  
the study presented.  We have established that  
the resonance characteristics of transparent 
microparticles, i.e., their Q factor and the resonance 
contour width, may have a noticeable effect on the 
threshold characteristics of the stimulated light 
scattering processes initiated in transparent 
microparticles. 

The investigations made revealed that the value of 
the overlap coefficient Bc for interacting optical fields 
of the pump and SBS inside the particle. Its value 
determining the value of the SBS threshold intensity, 
depends on the accuracy with which their spatial 
profiles coincide.  In this case the values of Bc 
essentially increase when the frequency shift between 
the pumping waves and SBS is less than the halfwidth 
of the line of a natural particle resonance, i.e., Δω < Γ 
(double resonance).  The increase in particle size leads 
to excitation of higher quality surface modes and, 
hence, to a decrease in Γ.  The condition of double 
resonance is violated (Δω > Γ), and the values of the 
coefficient Bc decrease. 
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