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A method of longwave radiative transfer parameterization for the Earth's 
atmosphere is described. Spectral line parameters are used to calculate 
characteristics of molecular absorption. The k-distribution technique is shown to 
provide uncertain calculation of the frequency dependence of the transformed 
coefficient of molecular absorption. So, a phenomenological scheme has been 
constructed to treat overlapping gas absorption bands, which ensures higher level of 
parameterization of transmission functions than traditional techniques can provide. 
In comparison with line-by-line (LBL) techniques, this method calculates the 
transmission functions along any atmospheric path with an accuracy better than 1$
2%. 

 

INTRODUCTION 

 

The atmospheric radiative transfer calculations in 
current climatological problems must be 
computationally fast yet exact, what in essence is 
incompatible.1,2 So, currently a considerable researcher 
effort is directed toward creating efficient radiative 
transfer parameterizations, i.e., towards reaching a 
compromise between computational cost and accuracy. 
This paper presents a method of parameterizing the 
transmission functions in the case of overlapping 
absorption bands of atmospheric gases.  

In order to give an idea of how molecular 
absorption is incorporated in radiation calculations, we 
consider the solution of longwave radiative transfer 
equation in the clear atmosphere in the form1 
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where F↑(z) and F↓(z) are the upward and downward 
fluxes through the level z; Bν(z) is the Plank function; 

Tν
f(z, z′) is the diffuse transmission function given by 

the following expression: 
 

Tν 
f(z, z′) = 2 ⌡⌠

0

1

 exp 

⎩
⎨
⎧

⎭
⎬
⎫

 $ 
1
μ τ(ν, z, z′)  dμ, (3) 

 

where μ is the cosine of zenith angle, 
 

τ(z, z′) = ⌡⌠
z

z′

 K(ν, p(h), T(h)) ρ(h) dh, (4) 

 

τ(z, z′) is the optical depth of the layer z $ z′; 
K(ν, p(h), T(h)) is the molecular absorption coefficient, 
which is a function of the pressure p and temperature 
T; and ρ(h) is the gas concentration. 

Spectral analyses usually assume Voigt line shape 
for individual spectral lines, which is a convolution of 
the Doppler and Lorentzian line shapes and includes an 
improper integral. Furthemore, absorption coefficient 
calculations generally involve summation over a large 
number of spectral lines (numbering 105 in ozone 
absorption bands, for example), which in essence 
represents an extra integration. It should be noted that  
frequency integration is integration of rapidly varying 
functions. Despite great recent effort to improve 
algorithms of molecular absorption calculation,3,4 direct 
methods, even used in simple case like our, are very 
much computationally expensive.  

Radiative transfer parameterizations are generally 
started by assuming the approximation 
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where μ0 = 1.66. As pointed out in Ref. 5, this affects 
only the downward fluxes in the lower troposphere, 
with overall error not exceeding 1 W/m2. 

Further standard step is to divide the frequency 
integration interval into the subintervals Δν, within 
which the Plank function can be considered constant, 
what finally yields equations of the type of (1) and 

(2), but with Tν
f(z, z′) now meaning the average 
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transmission function over the spectral interval Δν 
(Refs. 1 and 2) 
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Thus, the task of parameterizing the transfer 
equation is essentially that of parameterizing the 
transmission function as given by expression (6). Of 
notice is that the diffusion factor as given by Eq. (5) is 
not to be necessarily used to parameterize the transfer 
equation (e.g., see Refs. 6 and 7). 

 

PARAMETERIZATION OF TRANSMISSION 

FUNCTIONS IN CASE WHEN A SINGLE GAS 

ABSORBS  

A well recognized fact now is that due to poor 
model representations of the absorption spectra, 
particularly those of carbon dioxide and ozone 
absorption, large errors can be obtained.1,5,8 For the 
sake of less errors, the standard Courtis-Godson 
method9 is frequently abandoned with the result being 
a complicated functional dependence of the 
transmission function on meteorological parameters, 
and not always a success. The 1990 intercomparison of 
radiation codes has demonstrated that calculated data 
seriously disagree and errors are an order of magnitude 
higher than the required values, even with a purely 
molecular atmosphere (with no scattering and clouds 
present).10 These discrepancies mostly stem from the 
difference in used parameterizations of molecular 
absorption parameters, that enter into the transfer 
equation. 

Using the Laplace transform, the transmission 
function can be represented as a series of exponentials 
(in the foreign literature, this method is commonly 
referred to as the "k-distribution" technique), which 
transformation increases the approximation accuracy 
and favors parameter estimation. In addition, the 
expotential representation of transmission functions is a 
convenient approximation for solving the transfer 
equation in a scattering medium.11,12 

Upon the Laplace transform, the transmission 
function takes the following form12: 
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where τ(g) is the optical depth, the exponent under the 
integral in Eq. (6) is 
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W(ν) = 
⎩
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⎧1, τ(ν) < τ,
0, τ(ν) > τ.   (9) 

The g(τ) calculation reduces to summing the 
intervals for which the condition τ(ν) < τ holds. 
Consequently, g(τ) is a monotonically increasing 
function whose inversion readily yields τ(g). The 
numerical implementation is quite trivial. To evaluate 
τ(g), it is necessary to calculate the absorption 
coefficients by uniformly incrementing frequency and 
then to sort the resulting array in ascending order. 

In Refs. 11 and 13, the transmission functions 
were derived using the relations 
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The function W(τi, τi+1) is nonzero (equal to 
unity) for those spectral intervals where the condition 
τi < τ(ν) < τi+1 is satisfied. To find out how Eqs. (7)$
(9) and Eqs. (10)$(11) are interrelated, we adopt the 
relation12 
 

g(τ) = ⌡⌠
0

τ

 f(ϑ) dϑ ,  (12) 

 

from which it follows that 
 

f(τ) = 
dg
dτ ⇒ f(τ) Δτ ≈ g(τ + Δτ) $ g(τ). (13) 

 

The validity of Eq. (13) rests upon the fact that 
g(τ) is a smooth, monotonically increasing, and 
everywhere differentiable function. From Eqs. (13) and 
(8) it follows that, to calculate f(τ) Δτ, it is necessary 
to sum spectral intervals for which the condition 
τ < τ(ν) < τ + Δτ is satisfied; thus the relationship 
between Eqs. (11) and (8) can readily be established. 
It should be noted that the intermediate f(τ) 
calculations lead to extra complication of the numerical 
realization and, moreover, the numerical differentiation 
always increases the error. By means of equations (7)$
(9), we change from the rapidly varying function τ(ν) 
to the monotonic function τ(g), and that is all. Any 
time the atmospheric thermodynamic parameters 
change, we have to recalculate τ(ν) by the LBL method 
and then convert it to τ(g); thus, the parameterization 
problem has not been solved. In this sense, no 
improvement is gained over traditional LBL method 
because most computer time goes into the τ(ν) 
computation rather than the frequency integration.3,4  

Therefore, τ(g) parameterization is required in 
order to cope with the atmospheric variability. That 
can be done using either the method of reduced 
absorbing mass11,14 "scale approximation" or the c-k-
correlation technique6,13 which approximates the 
optical depth as 
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τ(g, z, z′) = ⌡⌠
z

z′

 K(g, p(h), T(h)) ρ(h) dh, (14) 

 

where K(g, p(h), T(h)) are the absorption coefficients 
at frequency g and height h. The c-k-correlation can be 
qualitatively interpreted as follows: it is valid when the 
molecular absorption coefficients, corresponding to the 
same frequency g, have altitude independent positions 
in the transformed spectrum k(g). To evaluate K(g), it 
is necessary to calculate K(n) by uniformly 
incrementing frequency within the interval ν1$ν2, and 
then to sort the resulting array in ascending order and 
to scale the spectral interval by Δν. That is, physically 
this approximation is based upon the fact that the 
spectral dependence of molecular absorption coefficient 
changes quite similarly with altitude for all spectral 
lines. Slight deviations are to be expected near the 
centers of weak lines, however their contributions are 
deemed insignificant under the conditions of the real 
atmosphere. The validity of c-k-correlation was 
evaluated numerically in Refs. 6 and 13. The error of 
transmission function calculation did not exceed 1%. 

Because of the smoothness of the integrand in 
Eq. (7), depending on the quadrature formulas used, 5 
to 10 expansion terms are sufficient to evaluate the 
integral, that is 
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Based on our previous experience, a few fixed 
pressures and temperatures are sufficient to calculate an 
array of absorption coefficients K(gi, pj, Tk), and in 
turn the number 103 of the latter is sufficient to 
calculate transmission functions for a wide range of 
atmospheric conditions. 

Figures 1 and 2 show typical altitude and 
temperature behaviors of the absorption coefficients. 

 

 
FIG. 1. Altitude behavior of the coefficient k(g). 

 
FIG. 2. Temperature dependence of absorption 
coefficient. Circles show k(g) values corresponding to 
the Gaussian quadrature nodes. 

 

OVERLAPPING ABSORPTION BANDS 

It can be stated that many approaches and 
methods have recently been developed that allow fairly 
efficient parameterization of the transmission function 
for the case of inhomogeneous atmosphere, however 
provided a single absorbing gas is considered. 

When absorption bands of two or more gases 
overlap, total transmission is approximated as a product 
of transmission functions of individual gases. This is the 
approximation deficiency, because the multiplication of 
transmission functions as exponential series results in 
exorbitant number of expansion terms, which is highly 
critical in the climate studies1,16 and, moreover, is 
fraught with uncertainty. Figure 3 shows an example of 
transmission function calculation by direct method for 
overlapping absorption bands of H2O and CO2, and 
Figure 4 gives the approximation error that can amount 
to 3$4%.  

 

 
 

FIG. 3. Transmission spectrum of vertical atmospheric 
path 0$50 km. The spectral resolution is 10 cm$1. LBL 
calculation by midlatitude summer meteorological 
model.  

 

An interesting method of treating overlapping 
absorption bands of two gases has been suggested in 
Ref. 6. In essence, transmission function for a single gas 
can be considered as a transform of f(k); therefore, for 
absorption of two gases a convolution-type expression 
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g(k) = ⌡⌠
0

k

 g1(k $ k′) g2(k′) dk′  (16) 

 
is valid. 
 

 
FIG. 4. Errors of using different approximations for 
treating overlapping H2O and CO2 absorption bands: 
the total transmission function as a product of H2O 
and CO2 transmission functions (1); midlatitude 
summer (2) and  highlatitude winter (3) models. 

 
On the one hand, this expression improves the 

above deficiency by not producing many terms due to 
exponential expansion of transmission function; but on 
the other hand, a detailed information on g1(k) and 
g2(k) is required now to evaluate integral (16). 

We decided not to use the traditional method of 
treating overlapping absorption bands as the product of 
transmission functions. Our approach to this problem 
has been detailed elsewhere15; so only basic features are 
repeated below. For simplicity, we will consider a 
homogeneous atmospheric path. In the case of two 
absorbing gases, the transmission function can be 
represented as 

 

T(U1, U2) = 
1
Δν ⌡⌠

ν1

ν2

 exp {$ K1(ν) U1 $ K2(ν) U2} dν. 

 (17) 

 

In principle, a one-dimensional Laplace transform 
can be applied to Eq. (17) to produce an expression 
similar to Eq. (7), with a total optical depth given by 
τ(g) = k1(g) U1 + k2(g) U2. Clearly, to calculate τ(g), 
the latter is to be invoked every time U1 and U2 
change. 

Our suggestion is that, when the spectra of 
different gases are partially correlated, the total 
transmission function might be represented as 

 

TA(U1, U2) = ⌡⌠
0

1

 exp {$k1(g) U1 $ ϕ2(g) U2} dg  (18) 

 

with unknown function ϕ2(g), being subject to the 
condition 
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 exp {$ ϕ2(g) U2} dg = 
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 exp {$k2(g) U2 } dg  (19) 

 

which makes relation (18) exact for either U1 = 0 or 
U2 = 0. This latter condition provides a relation 
between ϕ2(g) and k2(g), namely 

 

k2
$1(g) = g(k2) = ⌡⌠

0

1

 Wϕ(g) dg,  (20) 

where 
 

Wϕ(g) = 
⎩
⎨
⎧1, ϕ(g) < k2,
0, ϕ(g) > k2.

  (21) 

 

Relations (20)$(21) do not provide a scheme of 
constructing ϕ2(g). So, we took a purely 
phenomenological path of constructing this unknown 
function. It was assumed that ϕ2(g) is a smooth, 
unimodal curve and can be derived from k2(g) by 
transforming the latter in accordance with condition 
(21). This transformation is feasible in view of the fact 
that integral transformation (19) admits an ambiguity. 
A typical view of ϕ2(g) appears in Fig. 5. 

 

 
FIG. 5. Typical view of the function ϕ2(g). 

 

We have found that, as a rule, transmission of the 
mixture is overestimated once the function peaks at 
g0 = 1, and underestimated once g0 = 0. Conversely, 
using unimodal curve to represent ϕ2(g), the 
approximation expression and exact calculation can be 
brought into much closer agreement by varying g0. 
More complex shapes of the function ϕ2(g) are possible 
with more expansion terms retained. 

The position of the maximum is determined from 
the condition 

 

⌡⌠
0

∞

 ⌡⌠
0

∞

 [TA(U1, U2) $ T(U1, U2)]
2 dU1 dU2 = δ → min.   

 (22) 

 

Applying Gaussian quadratures to Eq. (17), the 
exponential series can be obtained 
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TA(U1, U2) = ∑
i =1

n

 Ci exp {$ k1(gi) U1 $ ϕ2(gi) U2} .  

 (23) 
 

As numerical simulations have shown, ten 
expansion terms will be sufficient.  

Figure 4 shows the error of transmission function 
calculation from formula (23) in comparison with the 
direct calculation,18 by using spectral line parameters 
from HITRAN-92 atlas19,20 for zonal-mean 
meteomodels.21 The position of the center of the 
function ϕ2(g) was determined for the meteorological 
conditions corresponding to the midlatitude model. 
Change of the meteorological conditions caused larger 
error, random in character and not exceeding the errors 
due to multiplication of transmission functions of 
individual gases. Subsequent averaging over wider 
spectral interval substantially reduces the error. 

MAIN CONCLUSIONS 

With the method presented here, a 10-term 
expansion can be successfully used to represent the 
transmission function with any spectral resolution.  

A range of possible atmospheric meteorological 
conditions is accounted for by representing the 
absorption coefficient as a matrix K(gk, Pm, Tn), k = 1, 
10; m = 1, 20; n = 1, 5. Altitude integration is performed 
using a spline function. 

In comparison with LBL technique, the error due 
to the present method does not exceed 1%, increasing 
slightly when different gases have considerably 
overlapping absorption bands. Subsequent averaging 
over a wider spectral interval reduces the error. 
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