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The paper presents asymptotic representations of the  partial wave amplitudes 

of the Mie series, which do not involve special functions.  The amplitude 

convergence depending on the refractive index of a large particle is considered.  

We have also made a comparison between the  partial wave amplitudes calculated 

by asymptotic formulae and those calculated by the Mie theory formulae.  The 

estimates obtained could be useful for testing the computational algorithms 

constructed using the precise Mie formulae. 
 

Knowledge of spatial distribution of optical fields 
within spherical particles is necessary in a wide range 
of problems in the aerosol nonlinear optics. Among 
them there are evaporation and levitation of aerosol 
particles in the field of high-power laser radiation, 
optical breakdown in aerosol, and nonlinear scattering 
of plane electromagnetic waves on plasma clusters.1 

The Mie series, describing electromagnetic fields 
inside the spherical aerosol particles, have a very 
slow convergence up to the dimensions satisfying the 
condition n >> |mρ|, where m is the complex 
refractive index of the substance and ρ is the 
diffraction parameter.  For a correct description of 
the electromagnetic field within a spherical particle 
taking account  amplitudes of the higher order partial 
waves is required as well as the possibility of 
calculating Riccati-Bessel function of the first 
(FRB1) and third (FRB3) kind with high accuracy.  
The account of a large number of partial wave 
amplitudes does not always result in the increase of 
accuracy of  calculations of the Mie series sums.  This 
is connected with the loss of accuracy of standard 
methods of FRB1 calculation with a complex 
argument z = r $ iμ when  increasing n index and at 
relatively large values of the diffraction parameter ρ.  
The accuracy of FRB1 calculation is limited by the 
computer word capacity and to calculate FRB1 with 
a complex argument |Im(m ρ)| > 30, it is essential to 
use the double-numbers.2  In this case the FRB1 
calculation with the use of double-precision 
arithmetic by the method of ascending recursion gives 
a correctly calculated FRB1 succession at relatively 
small values of the diffraction parameter of particles.3 
The Miller-Olver-Temme algorithm, based on the 
three-term recursion dependence, provides a correct 
procedure of FRB1 calculation for |z| < 30.4  The 
potentialities of an extended use of the algorithm are 
considered in Ref. 5.  The accuracy of this method 
depends on the initial iteration number Np >> n and 
on the type of the  normalizing expression used.  The 

use of the normalizing expression derived in Ref. 6, is 
demonstrated to provide higher accuracy of FRB1 
calculation than in the case with expanding into the 
continued fraction.7  The convergence of the 
continued fraction method when calculating FRB1 
used in Ref. 8 for the Mie sum calculation is entirely 
related to the numerical stability of the three-term 
recursion relations.9 Thus, in any method of 
numerical calculations at large diffraction parameters, 
a strict control is needed over the calculations of Mie 
series coefficients by comparing the results obtained 
with those by approximate formulas.  This approach 
has first been tried in the monograph 10.  Later its 
usefulness was discussed in Ref. 2.  This paper 
presents simple asymptotic expressions obtained by 
the authors.  These expressions do not contain special 
functions and have been derived for the partial wave 
amplitudes within the spherical particle with the 
number n >> |m ρ| and taking into account the degree 
of growth of the diffraction parameter simultaneously 
with n, in the range where standard methods of FRB1 
calculation do not work. 

Such an approach provides the analysis of partial 
wave amplitudes inside large particles, ρ > 100, as well 
as the analysis of an expanding spherical plasma cell of 
the optical breakdown.11 

The partial wave amplitudes may be written in a 
form suitable for calculations12 
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where Dn(ρ) and Cn(ρ) are the logarithmic derivatives 
of FRB1 and FRB3, respectively13 
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By the definitions of FRB1 and FRB3 we have 
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To obtain the desired estimate we use the 
asymptotic expressions for the Bessel and Hankel 

functions of the second kind when z c n≤ +( / )
/

3 2
1 2 , 

z → ∞, n → ∞, c > 0 (see Ref. 14): 
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where c(n + 1/2) is the gamma function, and the  
relations for logarithmic derivatives are as follows: 
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Substitution of Eqs. (5)$(10) into the initial relations 
(1)$(4) gives the asymptotic expressions for the partial 
amplitudes 
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Considering the asymptotic formulas (11) and (12) 
under condition of a simultaneous increase of ρ and 
n → ∞ and real m2 > 1, we obtain the that the 
amplitudes have, in the denominator, an increasing 
power function that provides for the  convergence of 
the Mie sum.2   

At real numbers m2 ≤ 1 (this case corresponds to 
the plasma sphere with a negligible absorption) the 
partial wave amplitudes have, in the denominator, a 
decreasing exponential function and therefore tend to 
infinity.  However, when summing the amplitudes in  
Mie series are multiplied by FRB1 and its derivatives 
that, in the final analysis, offers the Mie sum 
convergence but a very slow one.  

The figure shows relative deviations of the partial 
wave amplitudes, calculated by standard methods  
 

(namely, by the Miller-Olber-Temme algorithm and the 
two-point recursion formulas of the descending 
recursion for logarithmic derivatives,15) from those 
calculated by Eqs. (11) and (12).  The calculations 
were made for a spherical particle from Al2O3 
(corundum) with m = 1.829 $ i5.47⋅10$3, and radius of 
20 μm, at the wavelength of 1.06 μm.  The numbers 1 
and 2 denote the real and imaginary parts of the 
relative deviation δ for amplitudes c

n
, while 3 and 4, 

for the amplitudes d
n
, respectively. After n > 340 a 

sharp and simultaneous jump occurs in the real and 
imaginary parts of the amplitudes due to accumulation 
of the error  when calculating by standard methods. 

 

 
FIG. 1. 

 

Thus, use of the above-mentioned asymptotic forms 
we show the amplitude convergence at n → ∞ and real  
m2 > 1 as well as the amplitude divergence in the case 
of m2 ≤ 1.  Use of the above asymptotic forms together 
with the Meissel asymptotic representations considered 
by the authors in Ref. 16, extends the capabilities of 
the Mie theory for coarse spherical plasma clusters and 
large absorbing particles with the diffraction parameter 
ρ > 100.  The above asymptotic forms may provide a 
precise control over the calculation process based on 
standard algorithms.5,6  Special value must be placed 
on the fact that in the case of plasma clusters (m2 ≤ 1) 
it is necessary to take into account a longer succession 
of partial wave amplitudes in order to provide correct 
calculations of the Mie sums. 
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