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We propose an algorithm for direct computer simulation of random samples of 

the image of an  incoherently illuminated object that is viewed through the 

atmospheric layer. The algorithm has been constructed based on the method 

developed in Ref. 1. This algorithm can be used in the development and tests of 

image processing methods, simulation of adaptive systems of image correction, and 

in other problems. 
 
The image transfer simulator developed in Ref. 1 

assumes the use of anisoplanatic systems what is 
common for the problems of vision through the 
turbulent atmosphere.  It is clear that for such systems 
it is impossible to introduce the optical transfer 
function (OTF) since every fragment of an extended 
object image is distorted, generally speaking, 
differently than other ones.  Therefore we propose that 
the algorithm to obtain a realization of a short-exposure 
image be based on the superposition integral of random 

short-exposure point spread functions (PSF) S
∼

exp(r, r′, η). As shown in Ref. 1 PSF S
∼

exp(r, r′, η) may 

be represented as S
∼

exp(r, r′, η) = S0S(r $ξ $ ξ
∼
(r′, η)), 

where the PSF S0S describes the spread due to 
diffraction, due to averaged contribution from small-
scale fluctuations, and because of random displacements 

ξ
∼
(r′, η) of the spreaded point centers from their 

geometric optical positions; ξ(r′) = $ lr′ are determined 
by large-scale fluctuations.  

 

1. ALGORITHM OF COMPUTER SIMULATION OF 

AN IMAGE RANDOM REALIZATION  

 

In accordance with the above-said the algorithm 
developed includes the following basic stages: 

1.  Calculation of the PSF S0S(r $ξ) that 
determines the point image spread due to diffraction 
and averaged contribution from small-scale fluctuations 
for a preset parameters of an atmospheric path and the 
image forming optics. To do this, we make use of the 
isoplanatism property of the subsystem with the 
averaged PSF.  According to this property, S0S(r) is a 
result of the inverse Fourier transform from OTF of 
this subsystem S0S(r) = F$1{H0S(Ω)}. 

2.  Determination of the random displacements of 

the object’s point images ξ
∼
(r′, η) based on the model of 

a single phase screen.   

3.  Calculation of the random intensity distribution 

I
∼
(r) over the  image which is a superposition of the 

PSF S0S(r) taken with the point intensity weights I(r′) 

and displaced by the random value ξ
∼
(r′, η) from the 

image geometric position of these points ξ(r′). 
 

2. RANDOM DISPLACEMENTS OF OBJECT 

POINTS 

 

Determination of the random displacements 

 ξ
∼
(r′, η) of object point images is based on the model of 

a single phase screen for the turbulent atmosphere. 

Then we calculate the wave-front tilt θ
∼
(r′, η) 

introduced by the phase screen region that determines 
the  formation of  the object point r′ image.  Such a 
region is separated out by a cone with a vertex at the 
object point r′ and the base coinciding with a lens 
aperture having the diameter d (see Fig. 1a).  The 

wave-front tilt θ
∼
(r′, η) is a random function of the 

coordinate r′ (see Fig. 1b). Correlation function of 

tilts, <θ
∼
(r′) θ

∼
(r′ + δr)>, is determined by statistical 

properties of the phase screen simulating the 
atmospheric turbulence. For the statistically 
independent short-exposure realizations of the image 

the tilt θ
∼
(r′) should satisfy the condition 

<θ
∼
j(r′) θ

∼
j′(r′)> = σθ

2
 δjj′,  (1) 

where j, j′ are the realization numbers; σθ

2
 is the 

variance of wave-front tilts.   
In the case of a moving phase screen simulating the 

wind drift of the turbulence the tilt θ
∼
(r′, η) also depends, 

in a  random way, on the slow time η. In accordance with 

the hypothesis of the œfrozenB turbulence for the tilt θ
∼

(r′, η) the following relation is true: 
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θ
∼
(r′, η + η0) = θ

∼
 [r′ $ (V/2)η0, η]. (2) 

Hereby the spatiotemporal correlation of the wave-front 
tilts is set for different points of the object.   

The tilt θ
∼
(r′, η) is determined by two components, 

θ
∼
.(r′, η) and θ

∼
3(r′, η), in the planes XOZ and YOZ, 

respectively.  Since the region diameter d/2 is much 
smaller than the characteristic dimension of large-scale 

inhomogeneities the components θ
∼
. and θ

∼
3 can be 

calculated as the ratios of the phase difference on the 
boundaries of the region separated out to d/2 (see 
Fig. 1b) 

θ
∼
. =  

ϕ
∼
x
+
 (r′, η) $ ϕ

∼
x
$
 (r′, η)

k d/2
;  

θ
∼
3 =  

ϕ
∼
3
+
 (r′, η) $ ϕ

∼
3
$
 (r′, η)

k d/2
. (3) 

Here k = 2π/λ; ϕ
∼
x
+
 and ϕ

∼
x
$
 are the values of phase 

fluctuations on the diameter of the region separated out 

that is parallel to the plane XOZ, and ϕ
∼
y
+
, ϕ
∼
y
$
 are the 

values of phase fluctuations on the diameter YOZ. 
 

 
FIG. 1. Determination of random displacements of the 

object’s points: the phase screen region influencing the point 

image position (a), calculation of the random tilt θ
∼

 and 

displacement ξ
∼

 for a point image (b), ϕ+ and ϕ– are the 

values of phase fluctuations on the ends of the diameter of 

the phase screen region. 

The components ξ
∼
.(r′, η) and ξ

∼
3(r′, η) of the 

vector of random displacement ξ
∼
(r′, η) of the point 

image with the coordinate r′ equal to 

ξ
∼
.(r′, η) = θ

∼
.(r′, η) f, 

ξ
∼
3(r′, η) = θ

∼
y(r′, η) f.  (4) 

 

3. GRID IN THE OBJECT PLANE 
 

For computer simulation the two-dimensional fields 

of the object intensity I(r′), image intensity I
∼
(r), phase 

fluctuations ϕ
∼
, the angular displacements θ

∼
(r′, η), and of 

the spatial ones ξ
∼
(r′, η) are presented on discrete grids in 

the corresponding planes which are perpendicular to the 
axis OZ.  The choice of optimal parameters of these grids, 
in the first place the digitization step h, is most important 
in development of an effective computer code to construct 
images. 

To estimate the grid step h′ in the plane {r′}, we 
make use of the properties of the diffraction-limited 
noncoherent optical system. The OTF m0(Ω) and PSF 
S0(ϑ) of such a system2 are presented in Fig. 2, where Ω0 
is the cuttoff frequency of the noncoherent optical 
system, ϑ0 is the angle width of the PSF. For ϑ0 and 
linear width of the PSF in the object plane Δr0 it is valid 
that 

ϑ0 = λ/d,   Δr0 = z ϑ0.  (5) 

For the grid in the object plane {r′} with the step 
h′ the corresponding angular step is 

Δϑ = h′/z. (6) 

Nyquist frequency ΩN for it equals 

ΩN = 1/(2Δϑ).  (7) 

According to the sampling theorem3 a function 
with a bounded spectrum of half width Ω0 is accurately 
reproduced on a grid if its Nyquist frequency satisfies 
the condition 

ΩN ≥ Ω0. (8) 

The inequality sign in condition (8) corresponds to a 
redundant grid.  The OTF and PSF for this grid are 
presented in Fig. 2b.  For a limited number of the grid 
nodes M the grid with the Nyquist frequency ΩN = Ω0 
is optimal.  Hence the optimal step by angle equals 

Δϑopt = λ/(2d). (9) 

The OTF m0(Ω) and PSF S0(ϑ) for an optimal grid are 
presented in Fig. 2a. 

Under conditions of small-scale phase fluctuations 
the cuttoff frequency Ω0 of a noncoherent optical 
system does not increase and the condition (8) is not 
violated. According to this fact the PSF of that system 
S0S(θ) can not become narrower because of the 
averaged contribution from the small-scale fluctuations. 
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FIG. 2. The OTF m0(Ω) and PSF S0(x) of a diffraction�limited 

noncoherent optical system presented on the calculation grid; 

. = ϑf, ΩN is the Nyquist frequency of the grid, Ω0 is the 

optical system cuttoff frequency: the optimal grid for ΩN = Ω0 

(a), the redundant grid for Ω
N
 > Ω0 (b), the grid does not 

represent the diffraction spread at  ΩN < Ω0 (c). 
 

The diffraction spread of a point is not reproduced  
identically on a grid with the angular step Δϑ < Δϑopt 
and, therefore, the Nyquist frequency ΩN < Ω0. In 
particular, for Δϑ = 2Δϑopt or ΩN = 0.5Ω0 the  
diffraction spread of a point vanishes (Fig. 2c). 

 

4. ILLUSTRATION OF THE ALGORITHM 

 

The algorithm discussed above is illustrated in 
Figs. 3 and 4, where the single realizations of the short- 
exposure images and œlong-exposureB images, averaged 
over M = 20 realizations of independent phase screens,  
of the test objects are presented.  The results have been 
calculated on a 128 by 128 grid with the optimal step.   

Figure 3 presents the images of points of the 
object that consists of four point sources placed at 
the  vertices of a square.  One can see that the point 
images are spread by the diffraction and small-scale 
inhomogeneities equally. It is also seen from this 
figure that in every realization of the large-scale 
inhomogeneities these images are being independently 
shifted relative to each other.  Centers of the 
averaged images are close to the geometric optical 
images of the object points.  
 

 
 a b c 
 

FIG. 3. Image of the test�object consisting of four luminous points observed through the turbulent atmosphere: two realizations of 

short�exposure images (a, b), the image averaged over 20 realizations (c). Geometric optical positions of the point images are 

marked by notches on the coordinate axes.  Conditions of the numerical experiment: λ = 0.5 μm, C
n

2 = 5⋅10–16 cm–2/3, L = 64 cm, 

d = 10 cm, z = 2 km, grid dimension is 128 × 128, the grid step in the object plane h′ = 0.5 cm. 

 
 a b c 
 

FIG. 4. Illustration of the algorithm of the image distortions simulation: the object (a), one realization of a short�exposure image 

(b), the image averaged over 20 realizations (c). Conditions of the numerical experiment are the same as in Fig. 3. 



One may judge on the capabilities of the algorithm 
of simulating the images of complex two-dimensional 
objects by an example presented in Fig. 4 (the emblem 
of Moscow State University viewed through a two-
kilometer thick atmospheric layer). 

 
5. EFFECTIVE FRIED RADIUS 

 
As was mentioned, the general idea of the 

simulator developed consists in that the influence of 
small-scale turbulence is described by the averaged 
OTF m0S(Ω), whereas the large-scale inhomogeneities 
are simulated by generating the phase screens with the 
subsequent separation of random wave-front tilts.  Such 
an approach provides for the account of a wide range of 
the refractive index fluctuations within the limits of a 
single problem, but it requires to agree the parameters 
of both components of the image transfer simulator.  
The basic parameter that characterizes the averaged 
spread of images by the small-scale turbulence is the 
Fried radius r0 entering into the expressions (15) and 
(23) from Ref. 1.  To agree both simulator components, 
we shall obtain the effective Fried radius ref for the 
averaged distortions introduced by a phase screen.  In 
this case we use a parametric expression for the long-
exposure OTF, mL(Ω)  

mL(Ω) = exp {$ 3.44 (λΩ/ref)
c}. (10) 

Here the power index c and the effective radius ref are 
unknown constants.  To obtain this constants, we use 
the phase screen method and perform the series of 
numerical experiments to determine the average OTF 
mL(Ω).  In this case we shall assume that the basic 
contribution into the distortions is introduced by the 
random wave-front tilts at the lens aperture.   

In the numerical experiments we have many times 
generated realizations of the random phase screens for 
the preset parameters of the atmospheric turbulence. 

Calculation of the phase difference Δϕ
∼
i on the diameter 

of the region separated out was performed for every 
phase screen on the uniform grid on object with the 

dimension L. Further, the random deviation θ
∼
i of the 

wave-front tilt angle behind a lens was determined by 
the following formula: 

θ
∼
i = [λ/(2πd)] Δϕ

∼
i. (11) 

Histogram of the obtained angle deviations θ
∼
i was 

interpreted as the averaged long-exposure PSF SL(r).  
The long-exposure OTF mL(Ω) was obtained from 
SL(r) by the Fourier transform.  Then by the method of 
least squares the parameters c and ref of thus simulated 
OTF were determined.  A run of numerical experiments 
to obtain the Fried effective radius for different 
parameters of the atmospheric turbulence was 
performed on the grid with the node number 
N × N = 128 × 128, the lens diameter d = 5 cm, and the 
object dimension L = 5 m.  In every numerical 

experiment the realization number was M = 10 of 
independent phase screens.  The Kolmogorov model of 
the atmospheric turbulence was used. 

It should be noted that the power index c practically 
does not differ from the value c ≈ 2.  This fact shows that 
calculations of the PSF were made only with the account 
of wave-front tilts. Weak dependence of ref on the lens 
diameter d and grid dimension N has been established in 
these simulations. Thus, when the lens diameter d 
changes from 1 to 50 cm, that is by 50 times, the 
parameter ref changes no more than by 50%.  This 
circumstance allows us to consider only one value of ref.   

When the number of the calculation grid nodes on 
the phase screen grows a tendency to decreasing  
difference between values of ref and r0 is observed.  
This fact is connected with better representation of the 
atmospheric turbulence structure on the phase screens 
with large number of nodes. However, as numerical 
experiments showed, the essential differences of ref 
from r0 can be observed on the grids with N = 128 that 
are often used in practice. The Fried radius r0 has been 
changed from 0.2 to 33 cm in the series of experiments 
performed. For every value r0 the effective Fried radius 
ref was determined from the experiments.  Analysis of 
the obtained data allowed us to derive an analytical 
dependence of ref on r0 in the form of the  following 
approximation formula: 

ref = 1.82 r0
0.83

, (12) 

In this case the value r0 in (12) should be in 
centimeters.  For N = 128 the formula (12) 
approximates the values ref obtained in the experiments 
with the accuracy better than 1.4% over the entire 
region 0.2 ≤ r0 ≤ 33 cm. 

 

6. CONCLUSION 

 

The algorithm proposed in this paper has been realized 

in the form of specialized subroutines for the IBM�

compatible computers. The user interface running in the 

Windows 3.1 and Windows–95 environment has been 

developed also. This interface allows one to easily change 

the parameters of numerical experiments and observe, on a 

display, the dynamic distortions of images as well as of the 

averaged (long�exposure) ones. Initial distributions of light 

intensity in the object plane, which are the input data for 

the computer simulation, are entered into a computer 

memory in the Windows Bitmap format. The output data 

are a sequence of the two�dimensional arrays describing 

short�exposure intensity distributions in the image plane 

with some step in time. 

The data obtained on the basis of the developed 

algorithm can be used to develop and test algorithms of 

image processing, simulate adaptive systems for image 

correction, and also for other model problems in applied 

optics.   
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