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Atmospheric aerosol transport by air masses is studied using a model that 

accounts for the factors that may influence the particle size distribution. Among 

those factors there are the turbulent diffusion, atmospheric hydrothermodynamics, 

orography, disposition of aerosol emission sources, and particle growth due to 

coagulation. First we formulate a system of basic model equations and then the 

algorithm for its numerical solution. The model constructed has been used to 

reproduce the situation with the aerosol pollution of the atmosphere over Bratsk 

city in summer. Numerical calculations of submicron and fine aerosol fractions 

concentration were compared with the measurement data acquired in different  

parts of the city during a two-week mission in summer of 1990. 
 

1. INTRODUCTION 
 
Recently, a number of numerical models have been 

developed to treat the spread of impurities in the 
atmosphere (see Refs. 8, 10, 14, 19, and others). 
Although these models successfully explain many 
features of the passive impurity transport in the 
mesoscale atmospheric boundary layer, more elaborate 
models are still needed to provide for more reliable 
results that would allow for changes in the aerosol size 
spectra. However, there is a physical constraint on the 
model accuracy and it is the stochasticity of the 
processes influencing the atmospheric dynamics. As a 
consequence, aerosol particle size-distribution is formed 
by the inherently random factors so that it can never be 
reproduced even if the measurements are being carried 
out many times at the same point and under the 
absolutely identical conditions. So, a no less important 
question arises on to what extent it could be reasonable 
to modify the dynamic models of the atmospheric aerosol. 

In this paper we describe a realistic model for 
estimating the contribution of anthropogenic factor to 
the aerosol pollution of the atmosphere. The following 
processes are involved in the  model consideration. 

Aerosol is transported by air flows. The 
reconstruction of the air flow velocity field is done 
numerically by solving the system of 
hydrothermodynamic equations with the account of 
some non-adiabatic factors, balance equations for 
turbulent energy and dissipation, and so on. Aerosol is 
transported as a passive impurity, that means that each 
aerosol particle moves in along-flow direction only. 
Particles are assumed to grow in size due to 
coagulation. Local sources of aerosol are also involved 
into the consideration.  

Along with the main problem of aerosol transport in 
the atmosphere we deal, in this study, with some related 
tasks. For instance, we study the role of aerosol emissions 
in formation of the aerosol pollution of individual 
localities. To determine optimal arrangement of industrial 
pollution sources that could provide for the lowest 
possible air pollution, we study the processes of aerosol 
dispersal. 

 
2. BASIC EQUATIONS 

 
Below we formulate the complete set of equations 

needed to describe aerosol transport in the atmosphere. As 
was mentioned in the Introduction, aerosol particles are 
assumed passive, constrained to move strictly in along-
flow directions of the hydrodynamic flux, formed by the 
atmospheric thermodynamic state and orography. The 
aerosol size-spectrum and number density are assumed to 
be affected by atmospheric turbulence and coagulation. 

 

2.1. Equation of discontinuity 

 

Here we present the model, developed in Ref. 9, 
which takes into account the transport and coagulation 
of atmospheric aerosol. The starting point of our 
approach is the discontinuity equation, which describes 
transport of a passive impurity denoted as ϕi(r, t) 

∂ϕi

∂t  + div u ϕi = Fi(ϕi, x, y, z, t), (1) 

where u is the vector of the flow velocity. The right-
hand side of (1), being a functional of ϕi, includes 
terms describing sources, sinks, and chemical 
interactions among pollutants, as well as other factors 
influencing their concentrations. 
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To average equation (1), the functions ϕ and u are 
presented as sums of their volume averages plus 

deviations, ϕ = ϕ$ + ϕ′ and uα = u
$
α + u ′

α, while the 
impurity fluxes are given by the gradient-like 
approximation 

u ′
α ϕ′

i  = $ μα,β 
∂ϕi

∂xβ
   (α, β = 1, 2, 3). (2) 

Here, μα,β is the tensor of diffusion coefficients, 
and the overbar denotes spatial averaging. We take the 
tensor principal axes to coincide with the Cartesian 
coordinate axes, and so we confine ourselves to dealing 

with diagonal elements only.
13,17,20

 
In the equation obtained for deviations, we change 

coordinates according to the following formula: 

σ = 
z $ δ(x, y)

H $ δ(x, y)
 H,  (3) 

where δ(x, y) describes relief, and H is the upper 
integration limit. 

As a result, the turbulent diffusion equation for 
the transport of polydisperse aerosol concentrations 

with the account of coagulation takes the form
9
 

∂ϕg

∂t  + div u ϕg = I(ϕg, x, y, z, t) + K
∼

ij(ϕ′
i, ϕ′

j) +  

+ F1 + F2, (4) 

where 

F1 = 
∂

∂x μxx 
∂ϕg

∂x  + 
∂

∂y μyy 
∂ϕg

∂y  + 
∂

∂σ χ1 
∂ϕg

∂σ  ; 

F2 = 
∂

∂x a1 μxx 
∂ϕg

∂σ  + a1 
∂

∂σ μxx 
∂ϕg

∂x  + 

+ 
∂

∂y a2 μyy 
∂ϕg

∂σ  + a2 
∂

∂σ μyy 
∂ϕg

∂y  ; 

a1 = δ
∼

x 
σ $ H

H $ δ
∼
(x, y)

 , (5) 

a2 = δ
∼

y 
σ $ H

H $ δ
∼
(x, y)

 ,   a3 = 
H

H $ δ
∼
(x, y)

 ; 

χ1 = a2
1 μxx + a2

2 μyy + a2
3 μσσ . 

Here ϕg is the concentration vector for particles whose 
masses are in the interval (g, g + dg); Kij(ϕi, ϕj) is a 
matrix operator describing coagulation; I(x, y, z, t) is 
the source of new particles with size g; and μxx, μyy, 
and μσσ are the coefficients of turbulent diffusion along 
x, y, and σ coordinates, respectively. 

By using single-point second moments of the 
turbulent pulsation, the coefficients of turbulent 
diffusion are determined as functions of the mean 
atmospheric parameters that is of the shear of air flow, 
atmospheric stratification, and turbulent energy. The 
functional dependence of the coefficients of the 

diffusion tensor on these parameters may be found in 
Refs. 8, 13, and 17, and it has been used in Refs. 6 and 
10. Therefore, here the aerosol particle transport 
equation (1) with account of coagulation will be solved 
together with equation of atmospheric 
hydrothermodynamics. 

 
2.2. Equation of atmospheric hydrothermodynamics 

 
Now we write down the initial system of 

hydrothermodynamic equations which take the 
orographic features into account by means of expression 
(3). In the new coordinate system, the 
hydrothermodynamic equations in the non-hydrostatic 

approximation look
1,8,9

 

∂û
∂t + div u û = $ 

∂P′
∂x  + a1 

∂P′
∂σ  + 

+ l v̂′ + Fu + a2
3 

∂
∂σ ρνu 

∂
∂σ 

⎝
⎜
⎛
⎠
⎟
⎞û

ρ$
 , (6) 

∂v̂
∂t + div u v̂ = $ 

∂P′
∂y  + a2 

∂P′
∂σ  $ 

$ l û′ + Fv + a2
3 

∂
∂σ ρνu 

∂
∂σ 

⎝
⎜
⎛
⎠
⎟
⎞v̂

ρ$
 , (7) 

∂ŵ
∂t  + div u ŵ = $ a3 

∂P′
∂σ  + λϑ′ (1 + γq) + 

+ Fw + a2
3 

∂
∂σ ρνu 

∂
∂σ 

⎝
⎜
⎛
⎠
⎟
⎞ŵ

ρ$
 , (8) 

∂ϑ̂
∂t  + div u ϑ̂ + 

S
a3

 (ŵ′ + δ
∼

x û′ + δ
∼

y v̂′) = 

= 
Lw Φ ρ$

Cp
 + Fϑ + a2

3 
∂

∂σ ρνϑ 
∂

∂σ 
⎝
⎜
⎛
⎠
⎟
⎞ϑ̂

ρ$
 , (9) 

∂q̂
∂t + div u q̂ = $ a3 ŵ 

∂Q
∂σ  $ Φ ρ$ + 

+ Fq + a2
3 

∂
∂σ ρνq 

∂
∂σ 

⎝
⎜
⎛

⎠
⎟
⎞q̂

ρ$
 , (10) 

∂û′
∂x  + 

∂v̂′
∂y  + 

∂ŵ′
∂σ  = 0; (11) 

u = U + u′; v = V + v′; w = W + w′; 

ϑ = Θ + ϑ′; q = Q + q′; p = P + p′ 

(capital letters denote large-scale components of the 
meteorological fields, and primed letters the 
deviations). Here we use the notation 

a1 = δ
∼

x 
σ $ Ĥ

H $ δ
∼
(x, y)

 ,   a2 = δ
∼

y 
σ $ Ĥ

H $ δ
∼
(x, y)

 ,  
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a3 = 
Ĥ

H $ δ
∼
(x, y)

 ; 

div u ϕ̂ = 
∂uϕ̂
∂x  + 

∂vϕ̂
∂y  + 

∂wϕ̂
∂σ  ;   ϕ̂ = ρϕ,  

ϕ = (u, v, w, ϑ′, q′);  

δ
∼

x = 
∂δ
∼

∂x ,   δ
∼

y = 
∂δ
∼

∂y , 

w = a1 u + a2 v + a3 w; 

Fu = 
∂τ11

∂x  + 
∂τ12

∂y  + 
∂

∂σ (a1 τ11 + a2 τ12), (12) 

Fv = 
∂τ21

∂x  + 
∂τ22

∂y  + 
∂

∂σ (a1 τ21 + a2 τ22), 

Fw = 
∂τ31

∂x  + 
∂τ32

∂y  + 
∂

∂σ (a1 τ31 + a2 τ32), 

Fϑ = 
∂H1

∂x  + 
∂H2

∂y  + 
∂

∂σ (a1 H1 + a2 H2), 

Fq = 
∂Q1

∂x  + 
∂Q2

∂y  + 
∂

∂σ (a1 Q1 + a2 Q2), 

where t is time; u, v, and w are the wind velocity 
components along x, y, and σ coordinate axes; 
u = (u, v, w), ϑ is the potential temperature; ρ is the 
density; l is the Coriolis parameter; q is the specific 
humidity; Lw is the latent heat of condensation, Φ is 
the rate of transition to liquid phase; S is the 
stratification parameter; λ = g/T is the buoyancy; 

γ = 0.61; ρ$(z) is the background density; τij, Hi, and 
Qi (i = 1, 2, 3; j = 1, 2) are the tensor of Reynolds 
viscid stress, and turbulent heat and moisture fluxes; 
νu, νϑ, and νq are the vertical turbulence coefficients 
for momentum, heat, and moisture moments. 

To describe the structure of the near-ground layer, 
we use the Monin-Obukhov's similarity theory and the 
empirical Businger's functions.7,11 As an approximation 
of the vertical profiles of meteorological fields in the 
near-ground layer, we assume the "1/3 power law" 
under the conditions of strong instability, and a linear 
dependence as described in Refs. 7 and 11 under highly 
stable conditions. Finally, the model equations for the 
near-ground layer become 

æ z 
∂⏐u⏐

∂z  = u
*
 ϕu(ζ), 

æ 
∂P

∼

∂z  = P
∼

*
 ϕϑ(ζ)   (P = ϑ, q); 

æ ⏐u⏐= u
*
 fu(ζ, ζu); P $ P0 = P

∼
*
 fϑ(ζ, ζu);  

ζ = ζ/L; ζh = h/L; (13) 

νi = 
u

* æ z

ui(ζ)  , (νi)h = 
u

* æ H

ϕi(ζh)
 ;  

ai = 
ϕi(ζ)

fi(ζh, ζi)
 ; L = 

u2
*

æ2 λϕ
*

  (i = u, ϕ); 

fu(ζ, ζ0) = ⌡⌠
ζ0

ζ

 
ϕu(ζ)

ζ  dζ;  

fϑ(ζ, ζ0) = ⌡⌠
ζ0

ζ

 
ϕϑ(ζ)

ζ  dζ, 

where ⏐u⏐= (u2 + v2)1/2 is the modulus of the velocity 
vector; u

*
 is the friction drag; ϑ

*
 and q

*
 are the 

potential temperature and specific humidity scales; h is 
the near-ground layer thickness; L is the length scale; 
zu and zϑ are the roughness parameter for the wind and 
temperature, ζ  is the dimensionless height representing 
a hydrostatic stability parameter; ϕi and fi are the 
directed, universal functions. In the near-ground layer, 
we will employ potential temperature corrections for 
the moisture effects that will alter somewhat the length 
scale L. Therefore, we introduce the length scale 
L

*
 = L (J

*
 + 1) and correspondingly the dimensionless 

height ζ* = z/L
*
 = ζ(1 + J

*
), where J

*
 = 0.61 T(qh $

 qz0
)/(ϑh $ ϑz0

) is the dimensionless number 

characterizing the relative significance of the effects of 
humidity and temperature stratifications. We will solve 
the system of equations (6)$(13) in the domain 
Dt = D × [0, T], D = {(x, y, σ): x ∈ [$ X, X], y ∈ [$
 Y, Y], σ ∈ [0, H]} under the following initial and 
boundary conditions:  

û′ + v̂′ + ŵ′ = 0;  ϑ̂′ = 0;  

q̂′ = 0  at t = 0; (14) 

∂û′
∂x  = 

∂v̂′
∂x  = 

∂ŵ′
∂x  = 0,  

∂ϑ̂′
∂x  = 0,  

∂q̂′
∂x  = 0  at x = ± X; (15) 

∂û′
∂y  = 

∂v̂′
∂y  = 

∂ŵ′
∂y  = 0,  

∂ϑ̂′
∂y  = 0,  

∂q̂′
∂y  = 0  at  y = ± Y; (16) 

û′ = v̂′ = ŵ′ = 0;  ϑ̂′ = 0;  

q̂′ = 0  at  σ = H; (17) 

a3 h 
∂û
∂σ = au û,   a3 h 

∂v̂
∂σ = au v̂,  

a3 h 
∂ϑ̂
∂σ = aϑ (ϑ̂ $ ϑ̂0), 

a3 h 
∂q̂
∂σ = aϑ (q̂ $ q̂0);    

∂ŵ
h

 = $ ⎝
⎛

⎠
⎞∂û

∂x + 
∂v̂
∂y   
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at σ = 
(h $ δ̂(x, y)) Ĥ

H $ δ̂(x, y)
 ; (18) 

ŵ′ = 0  at  σ = 0. 

Surface temperature is determined from the 
thermal balance equation. 

 
2.3. Parameterization of subgrid-scale turbulent 

diffusion 

 

Right-hand sides of equations (6)$(13) contain 
several unknown functions, and below we present 
semiempirical expressions for their determination. As in 
Refs. 8 and 12, here we represent the symmetric stress 
tensor τi,j by a function which depends on the 
deformation tensor D of the mean motion, namely: 

τi,j = ρ$ KM Di,j, (19) 

where the deformation tensor Di,j and the heat flux Hj 
are given as 

Di,j = 
∂ui

∂xj
 + 

∂uj

∂xi
 $ 

2
3
 δij 

∂uk

∂xk
  (i = 1, 2; j = 1, 2), 

Hj = ρ$ KH 
∂ϑ
∂xj

 . (20) 

Here KM and KH are the parameters of the kinematic 
viscosity and diffusion (KM/KH = 1/Pr ≈ 3). We 
define the spatiotemporal variations of the coefficient 
KM as 

KM = 
⎩
⎨
⎧(K

∼
 Δ$)2 ⏐Def⏐, if Ri > 1,

(K
∼

Δ$)2 ⏐Def⏐(1 $ (KH/KM) Ri), if Ri ≤ 1,
 

 (21) 

where Δ
$
 = A1/2; A = Δx Δy; K is the numerical 

constant. The deformation Def is defined by the 
formula 

(Def)2 = 
1
2
 Sp D2 = (D 2

11 + D 2
22 + D 2

33) + 

+ D 2
12 + D 2

13 + D 2
23. (22) 

We represent the Richardson number as 

Ri = 
g

Θ 
∂ϑ
∂z/(Def)2. 

When making numerical calculations for the 
processes studied that have larger horizontal scales as 
compared to vertical ones, we use a combined method 
in which the horizontal coefficients of turbulent 
exchange are determined from Eqs. (19), (20), and 
(21), while the vertical ones from the energy balance 
equations for turbulence and dissipation 

∂b
∂t + u grad(b) = 

= νu ⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎛

⎠
⎞∂u

∂z

2

+ ⎝
⎛

⎠
⎞∂v

∂z

2

$ λαT ⎝
⎛

⎠
⎞∂ϑ′

∂z  + S  $ λαq 
∂q
∂z  + 

+ ab 
∂
∂z νu 

∂b
∂z $ c 

b2

νu
 , (23) 

∂ε
∂t + u grad(ε) = 

= α1 
ε
b
 ⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞∂u

∂z

2

 + ⎝
⎛

⎠
⎞∂v

∂z

2

 $ αθT
 
∂θ′
∂z  $ αθε

 
∂q
∂z  + 

+ α2 
∂
∂z ν 

∂ε
∂z $ α3 

ε2

b
 , (24) 

where αT = νϑ/νu = ϕu(ζ)/ϕϑ(ζ), ab and c are the 
constants. 

We will solve these equations with the following 
initial and boundary conditions8: 

b = 0, ε = 0 at t = 0, 

b = b2
u(ζh, ζ0), ε = εh(ζh, ζ0) at z = h, (25) 

b = 0, ε = 0 at z = H. 

For definitions of the functions b2
u(ζh, ζ0) and  

ε = εh(ζh, ζ0) and the methods of their determination, 
see Ref. 2. 

 

2.4. Coagulation 

 

Normally the transport of aerosol particles in the 
atmosphere is accompanied by their growth. Time 
variation of the particle number density and size 
spectrum is described by the Smolukhovskii equation 

∂ϕg

∂t  = 
1
2
 ⌡⌠

0

g

 K
∼
(g, g1) ϕg$g1

 ϕg1
 dg1 $ 

$ ϕg ⌡⌠
0

∞

 
 
K
∼
(g, g1) ϕg1

 dg1 + I(ϕg, t), (26) 

where g1 is the integration variable (mass); ϕg is the 
concentration of particles with the mass between g and 

g + dg; K
∼
(x, y) is the collision frequency for particles 

with masses x and y; I(ϕg, t) is the formation rate of 
particles with the mass g. This last term is added to the 
right-hand side of equation (1). The first term in 
expression (26) describes coagulation of smaller-sized 
particles into those of a bigger size g, while the second 
one the loss of particles of the  size g via coagulation 
with other particles. 

The system of equations (1), (4), and (5) will be 
solved in the domain 

Dt = D × [0, T],  

D = {(x,y,σ) : x ∈ [$X,X], y ∈ [$Y,Y], 

 

σ ∈ [0,H]} 



A.E. Aloyan et al. Vol. 11,  No. 5 /May  1998/ Atmos. Oceanic Opt.  
 

 

463

under the following initial and boundary conditions: 

ϕg⏐t=0 = ϕ0
g ; 

∂ϕg

∂x  = 0   at   x = ± X, 

∂ϕg

∂y  = 0   at   y = ± Y; (27) 

ϕg = ϕbg   at   σ = H, 

where ϕbg is the background particle concentration. 
In the lower integration limit, the boundary 

condition is given in the parameterized following form: 

a3 
∂ϕg

∂σ  = 
aϑ (β

∼
g $ fs)

β
∼

g + aϑ μσσ

   at   σ = 
h $ δ

∼

H $ δ
∼ H. (28) 

Here β
∼

g = βg u
*
 $ ωg, βg characterizes interaction of 

impurities with the underlying surface; X and Y are the 
side boundaries of the integration domain over the 
spatial variables x and  y, respectively; fg(x, y, t), 

(g = 1, n ) describes impurity sources at the roughness 

level; ϕgh is the concentration of aerosol particles at the 
top of the near-ground layer. 

The solution to the problem formulated by 
expressions (4)$(26) will be sought on the class of 
nonnegative solutions. The colliding particles are 
assumed to be spheres and with the size much less than 
the free path in the ambient gas. Then, K(x, y) can be 
represented as18 

K
∼
(x, y) = A(x1/3

 + y1/3) (Dx + Dy) βxy, (29) 

where Dx is the diffusion coefficient of a particle with 
the mass x 

Dx = 
kB T

6πη Rx
 × 

× 
⎣
⎡

⎦
⎤

1 + Knx ⎝
⎛

⎠
⎞

A + Q exp ⎝
⎛

⎠
⎞$ 

b3

Knx
 ; (30) 

kB is the Boltzmann constant; b3, A, and Q are the 
empirical constants; A = 1.25; Q = 0.4; b3 = 1.1. The 
correction factor βxy is given as18 

βxy = ⎝
⎛ Rx + Ry

Rx + Ry + dxy
 +

⎠
⎟
⎞4 (Dx + Dy)

(V2
x + V2

y)
1/2

 (Rx + Ry)

$1

 (31) 

Knx = 
lx
Rx

 ; dxy = (d2
x + d2

y)
1/2, 

dx = 
1

6 Rx lx
 ((2 Rx + lx)

3 $ (4 R2
x + l2x)

3/2) $ 2Rx; 

lx = 
8Dx

πVx
 ;  Vx = ⎝

⎛
⎠
⎞ 

8kT
πx

 

1/2

;  x = 
4
3
 π R3

x ρ. 

Here Dx is the diffusion coefficient of the ith 
particle with the radius Rx; T is temperature; lx is the 
mean free path; Vx is the mean particle velocity; x is 
the particle mass; ρ is the particle density, and η is the 
gas viscosity. 

 
3. COMPLEX-CONJUGATE PROBLEM 

 
Environmental protection studies generally focus 

on achieving global assessments that are functionals of 
the particle concentration fields rather than of the 
fields themselves. Among such functionals there are the 
bulk particle sedimentation rate in a given area, 
economic damage due to environmental pollution by 
aerosols and many others. All of them are linearly 
related to the particle size spectrum. While obtainable 
directly as described above, more efficiently these 
variables can be determined using complex-conjugate 
functions.4 We shall apply this method to estimate 
aerosol pollution over Bratsk region and to deduce 
optimal arrangement of the industrial sources. For 
simplicity, an impurity is assumed to be passive, that is 
Kij (ϕi, ϕj) = 0. 

Let us write the equation (4) in the operator form 
as 

Lϕ = Ig(x, y, z, t),  (32) 

where 

Lϕ = 
∂ϕ

∂t  + 
∂uϕ

∂x  + 
∂vϕ

∂y  + 
∂wϕ

∂σ  $ F1 $ F2 (33) 

and Ig describes pollution sources. 

The complex-conjugate operator L* is defined 
using the Lagrange identity as 

 

(ϕ*, Lϕ) = (ϕ, L*ϕ*). (34) 

If div u = 0, the complex-conjugate operator is 

L*ϕ = $ 
∂ϕ*

∂t  $ 
∂uϕ*

∂x  + 
∂vϕ*

∂y  + 

+ 
∂wϕ*

∂σ  $ F1 $ F2. (35) 

Now we consider the following complex-conjugate 
problem: 

L*ϕ* = pk, (36) 

where pk is a nonnegative function of x, y, z, and t; 
and k belongs to a nonempty set of values. The 
appropriate boundary conditions are as follows: 

∂ϕ*

∂x  = 0 at ⏐x⏐= X; (37) 

∂ϕ*

∂y  = 0 at ⏐y⏐= Y; (38) 

ϕ* = 0 at σ = H; (39) 
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a3 
∂ϕ*

∂σ  = 
aϑ β

β + aϑ μσσ
   at  σ = 

h $ δ
∼

H $ δ
∼ ; (40) 

ϕ*(t = T) = 0. (41) 

In order for the problem, formulated by equations 
(36) to (41), be properly posed, and for making the 
numerical algorithm stable, the solution to the problem 
is sought backward in time: from t = T to t = 0. For 
definiteness, the initial condition is specified for t = T. 

We denote the obtained solution as ϕ*
k. Now we 

multiply the equation (34) by ϕ*, integrate it and make 
a subtraction. Owing to the Lagrange identity, we 
arrive at a different representation 

∂
∂t (ϕ, ϕ*

k) = (I, ϕ*
k) $ (pk, ϕ). (42) 

Integrating equation (42) over t from t = 0 to 

t = T, with the account of the initial conditions for ϕ*
k 

and ϕ, finally yields 

⌡⌠
0

T

 dt ⌡⌠
D

 pϕ dD = ⌡⌠
D

 Iϕ* dD + 

+ ⌡⌠
0

T

 dt ⌡⌠
$X

+X

 dx ⌡⌠
$Y

+Y

 a3 ϕ0 ϕ*
z=h

 dy. (43) 

Here pk is defined as follows: 

pk = ⎩
⎨⎧
1, (x, y, z) ∈ ωk,
0, (x, y, z) ∉ ωk,

 (44) 

where ωk ⊂ D is the subregion where the total 
concentration of pollutants is to be estimated (the so-
called "monitored area"). It can readily be seen that the 
left-hand side of equation (43) gives the concentration 
of pollutants entering ωk within the time interval 
[0, T]. Thus, the total pollutant concentration in a 
given part of the D region can be determined by either 
solving the direct problem, equations (4) to (27), or 
the complex-conjugate problem, equations (36) to (41). 

In the latter case, the function ϕ*
k describes the fraction 

of the total pollution amount coming to the.ωk zone 
under control. 

Some ways of constructing such models for their 
further use in the environmental monitoring 
applications are discussed in Refs. 5 and 8. 

 
4. NUMERICAL SOLUTION 

 
Numerical methods for solving equations (4) and 

(5) have been developed earlier and may be found 

elsewhere in the literature.8 Those authors of Ref. 8 
present a numerical solution of the hydrodynamic 
equations (6)$(11) and the transfer equations for the 
chemically reacting substances that are then included 
into the right-hand side. From this point of view, the 
coagulation equation (26) needs nothing new except 

that its numerical solution is more complicated. Hence 
some transformations are needed to account for as wide 
particle size spectrum as possible at a sufficiently low 
computation costs. For this purpose, the particle size 
spectrum is introduced as follows.  

First we introduce a particle of the ultimately 
large mass G that, as coagulation progresses, is removed 
from the system. The reduction in the aerosol particle 
system mass due to the loss of coarse-fraction particles 
is small unless the mass of the latter compares with the 
whole system mass. This can be considered as a natural 
sink for the system, like that through the gravitational 
sedimentation of particles. 

The entire interval (0, G) was divided into 
fractions, on the logarithmic scale, by doubling the 
masses as 2gi = gi+1. 

The number of particles in the ith fraction, Ni, 
satisfies the equation that follows from integrating (26) 
over the mass interval (gi, gi+1), namely 

∂Ni

∂t  = 
1
2
 ∑
j≠1

i$2

 K
∼ 1

i$1,j Ni$1,j Nj + 
1
2
 K
∼ 0

i$1,i$1 N
2
i$1 + 

+ ∑
j=1

i$1

 (K
∼ 0

ij $ K
∼ 1

ij) Ni Nj $ ∑
j=1

I

 K
∼ 0

ij Ni Nj , (45) 

under the initial conditions 

Ni (t = 0) = N0
i, (46) 

where 

K
∼ 1

ij = (gi+1 $ gi)
$1 (gj+1 $ gj)

$1 × 

× ⌡⌠
x+y

gi+1

 
>
⌡⌠
gi+1

gj+1

 K
∼
(x, y) dx dy; (47) 

K
∼ 0

ij = (gi+1 $ gi)
$1 (gj+1 $ gj)

$1 × 

× ⌡⌠
gi

gi+1

  ⌡⌠
gj

gj+1

 K
∼
(x, y) dx dy. (48) 

When deriving the approximate equation (45), we 
replaced K values by their mean, over the corresponding 

mass intervals, values K
∼
 (Eqs. (46)$(47)). 

The right-hand side of the expression (1) may 
additionally involve source term I(g, r, t) for new 
coming arbitrarily shaped particles, as well as the sink 
term. Let us assume that the particle source produces 
particles of the most fine fraction. Then it is used to 
model particle formation due to coagulation. 

When applying this model, care should be taken 
concerning the system mass conservation. The point is 
that, when mass doubling procedure is used, as it is in 
our case, and 30 fractions are considered, the mass 
range of particles involved into the coagulation becomes 
nine orders of magnitude as wide. Thus, the accuracy 
of, say, 6 orders of magnitude, while being adequate 



A.E. Aloyan et al. Vol. 11,  No. 5 /May  1998/ Atmos. Oceanic Opt.  
 

 

465

when calculating the number concentration, is 
insufficient for mass concentration calculations, since a 
small error in the mass concentration of the coarse-
fraction particles may grow into a noticeable error in 
the mass of the entire system. One can avoid these 
troubles if the initial equation is written for the mass 
concentrations. One can do this in a similar way by 
multiplying equation (26) by g and slightly rearranging 
it, the result being the following evolution equation for 
the mass concentration: 

∂mg

∂t  = 
1
2
 ⌡⌠

0

g

 (K
∼ m (g1, (g $ g1)) + 

+ K
∼
 ((g $ g1), g1)) mg1

 mg$g1
 dg1 $ 

$ mg ⌡⌠
0

∞

 K
∼
 (g, g1) mg dg1 , (49) 

where 

gϕg = m0
g;  K

∼ m (x, y) = K
∼
 (x, y) y$1. 

Accordingly, the initial condition reduces to 

mg⏐t=0 = m0
g. 

Next, we integrate both sides of equation (26) 
over the ith fraction from g to gi+1, remove the 

averaged product of masses m$ i and m$j out of the 
integral, and finally obtain that 

∂Mg

∂t  = ∑
j=1

i$2

 (K
∼ m,1

i$1,j + K
∼ m,1

j,i$1) Mi Mj + 

+ K
∼ m,0

i$1,i$1 M
2
i$1 + ∑

j=1

i$1

 (K
∼ m,0

ij  $ K
∼ m,1

ij  + K
∼ m,0

ij  $ 

$ K
∼ m,0

ji ) Mi Mj $ ∑
j=1

I

 K
∼ m,0

ij  Mi Mj (50) 

with the initial conditions 

Mi⏐t=0 = M0
i, (51) 

where 

K
∼ 1

ij = (gi+1 $ gi)
$1 (gj+1 $ gj)

$1 × 

×⌡⌠
x+y

gi+1

 
>
⌡⌠
gi+1

gj+1

 K
∼
(x, y) y$1 dx dy; (52) 

K
∼ 0

ij = (gi+1 $ gi)
$1 (gj+1 $ gj)

$1 × 

×⌡⌠
gi

gi+1

 ⌡⌠
gj

gj+1

 K
∼
(x, y) y$1 dx dy. (53) 

The simplest validity test of the solution just 
obtained is the conservation of the total system mass.  
When there are sources and sinks of the aerosol the 
conservation should hold provided that these sources 
and sinks are taken into the consideration. Such a 
validation has been performed in Ref. 3 and showed 
that the system's particle concentration, in relative 

units, remains constant accurate to about 10$4 (for the 

particle number) and to 10$2 for the mass 
concentration. Therefore, the numerical scheme can be 
used for more complex calculations. 

The algorithm that is being used for numerically 
solving this type problems is based on the method of 
splitting among the physical processes involved,  so 
that, in each short time interval [tj, tj+1] of the 
duration Δt, a three-stage scheme is applied. These 
processes are the transport of aerosol substance along 
the trajectories, the turbulent diffusion; and the third 
one is the local change in the aerosol disperse 
composition due to coagulation. A detailed description 
of the numerical algorithm and the method of solving 
the problem using it have been thoroughly discussed 
elsewhere in the literature.4,8,9  

We have used the above models in numerical 
experiments on studying the meteorological processes in 
the region. The experiments allowed us to estimate the 
contributions coming from industrial sources of gaseous 
and aerosol pollution into the air over Bratsk. The idea 
of the method of numerical experiments is in 
calculating scenarios most characteristic of the area 
under study. 

The calculations were made for the following 
values of input parameters: 30 × 30 × 15 number of the 
region grid nodes used; X = Y = 72.5 km; H = 1550 m; 
Δx = Δy = 2.5 km; heights of the coordinate surfaces 
z = z0, 10, 20, 30, 40, 50, 100, 200, 300, 450, 600, 750, 
900, 1100, 1300, and 1500 m; and the time step 
Δt = 10 min. 

We have estimated the air pollution by aerosol from 
the sources in Bratsk and in its suburbs. Each source is 
considered in the model as an aggregated one and sums 
the contributions from several emission sources. In the 
emissions, only the number of 10 Å radius particles in the 
first aerosol fraction is specified, and then their 
subsequent evolution under the impact of transport, 
diffusion, and coagulation processes is being simulated. 
The aerosol pollution sources lie in the plane x, y and 
have coordinates x1 = 27.5 km, y1 = 32.5 km ,  

x2 = 37.5 km, and y2 = 32.5 km. At these points, the 
vertical distribution of all sources at heights z = 10, 20, 
30, 40, and 100 m is taken into consideration. The time 
used is the local time in Bratsk region. All scenarios start 
at 06:00 a.m. local time (LT). From  the frequency wind 
rose it follows that prevailing wind direction in this 
region is from the west, so experiments were taken at the 
following speeds of the background flow, specified at the 
1500 m height: Uf = 4 and 0 m/s. 
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5. EXPERIMENTAL STUDY OF ATMOSPHERIC 
AEROSOLS 

 
The measurements of atmospheric aerosol 

concentrations and size spectra were conducted over 
Bratsk in summer of 1990. The concentrations and 
disperse composition of atmospheric aerosol were 
measured with a diffusion aerosol spectrometer.15 
This sampling system consists of the three main 
components: 

1) diffusion batteries that first enlarge the 
particles to facilitate  measurements of size spectra of 
finely dispersed aerosols (of 0.003 μm size as small). 

2) laser aerosol spectrometer, capable of 
measuring concentration and size spectra of submicron 
particles (with radii between 0.15 and 3 μm). 

3) personal computer that provides for 
controlling the entire system and accumulating a data 
bank.  

The 4 to 5-min long measurements with the 
diffusion spectrometer have been carried out, at a 
certain point where we acquired real-time data. As a 
result of a single measurement we got information on 
the  total concentration of aerosol particles with radii 
between 0.003 and 1 μm, the parameters of particle 
size distribution (mean radius and size distribution 
width for finely-dispersed aerosol particles with radii 
up to 0.1 μm, and the concentration and size 
distribution histogram of submicron particles with the 
radii from 0.15 to 2.0 μm, binned in 10 intervals: 
(≤ 0.15 μm), (0.15$0.2), (0.2$0.3), (0.3$0.4),  
(0.4$0.5), (0.5$0.7), (0.7$1.0), (1.0$1.5),  
(1.5$2.0), (≥ 2.0 μm). 

This information was saved together with the 
date and time of measurements accurate to one 
minute. These data have been stored in the computer, 
so they can subsequently be processed in a desired 
way. Principles of operation of our experimental 
setup have been well described elsewhere.16 Sampled 
atmospheric air is blown through the diffusion 
batteries together with aerosol particles, whose 
trapping by the battery, defined as the ratio of 
particle concentrations before and after the passage 
through the battery, depends on the particle size 
distribution. Thus, the quantities actually measured 
in the experiment are the amounts of particles 
trapped by the batteries. To extract useful 
information on aerosol particle size distribution, it is 
necessary to additionally solve an inverse problem, 
that is to solve an integral equation of the first kind. 
Parameters of the size distribution of finely dispersed 
particles were determined in the course of simplified 
inversion procedure as described in Ref. 16. 

As part of the experiment, we continuously 
sampled aerosol particles in the free atmosphere; for 
which purpose, we selected 5 points, where the 
measurements have been continuously conducted for 
several days. As a result, a data bank was 
accumulated for five points. In each measurement, we 
have been determining particle size distribution 
(approximated by the gamma distribution) and the 
total particle concentration. For submicron particles a 
more exact size distribution has been determined as 
well. With about 4 min duration of a single 
measurement, a total of 250 to 300 experimental data 
points per day have been acquired. The measurement 
results were processed to retrieve the time behavior of 
the total particle concentration, time variation  of the 
submicron particle concentration, and the distribution 
of concentrations at a given observation point. 

Here we did not directly compare experimental 
results with numerical calculations. We rather use the 
experimental data to illustrate the theoretical 
calculations and to calibrate them. The reason was in 
the absence of accurate data on the emission rates and 
aerosol distributions. So, we varied emission rates to 
obtain a qualitative agreement between the numerical 
model results and the experimental data available. A 
more detailed comparison between these results will 
be done in a future work. 

 
6. DISCUSSION OF RESULTS 

 
6.1. Results of numerical calculations 

 
To study the meteorological situations and for 

estimating the role of the emission sources on aerosol 
and gaseous air pollution in Bratsk, we have carried out 
a number of numerical experiments. 

To illustrate the calculated results on the scenarios 
by the above-mentioned models, two types of figures were 
prepared. Figures of first type (1 through 3) present two-
dimensional transects of the flow fields and contour plots 
of the aerosol concentration for the eighth fraction, of the 
0.256 μm size (t = 14:00 LT, z = 10, 50, 450 m, left-hand 
side of the figure). Shown in the right-hand sides of the 
figures are the diameter distributions (histograms) for 
aerosol particles formed at different distances from the 
source (circled numbers 1 through 4) and at different 
altitudes above the Earth's surface. As seen from Figs. 1 
to 3, nonlinearity of the coagulation process results in 
different particle size spectra at different points. As a 
consequence, this, in turn, leads to an essentially 
unsteady of processes the aerosol formation at different 
distances from the source and, hence, to a strong spatial 
variability in the particle sedimentation. 
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FIG. 1. Two-dimensional transects of the air flow field (without the background flow) and contours of aerosol 
concentration for the eighth fraction, that corresponds to 0.256 μm, t = 14:00 LT, z = 10 m (left-hand side). 

Contour lines numbered 1 through 5 correspond to the following values (particles per cm3): 1.22⋅105 (1),  

2.44⋅105 (2), 3.51⋅105 (3), 4.89⋅105 (4), and 6.11⋅105 (5). Diameter distributions (histograms) of aerosol particles, 
formed at different distances from the emission source (circled numbers 1$4) and at different heights above the 
surface (right-hand side). Shown in dark is the region located within the urban area of Bratsk-city. 

 

 
 

FIG. 2. Same as in Fig. 1, but for z = 50 m and the flow speed of 4 m/s. Contour lines numbered 1 through 5 

correspond to the following values (particles per cm3): 1.18⋅105 (1), 2.35⋅105 (2), 3.51⋅105 (3), 4.71⋅105 (4), and 

5.88⋅105 (5). 
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FIG. 3. Same as in Fig. 2, but for z = 450 m. Contour lines numbered 1 through 5 correspond to the following 

values (particles per cm3): 4.93⋅104 (1), 9.85⋅104 (2), 1.48⋅105 (3), 1.97⋅105 (4), and 2.46⋅105 (5). 

 

 
 2.602 3.469 1.858 2.477 
 2.891 3.758 2.064 2.683 
 3.180 4.047 2.270 2.890 
 4.336 3.096 

 

FIG. 4. Danger functions ϕ*
  for different zones under control (marked by crosses) of the Bratsk region: one 

protected zone (left-hand side, ϕ*
max = 2.89⋅10$7) and two protected zones (right-hand side, ϕ*

max = 2.06⋅10$7). 
Zones of highest danger are outlined by the contour lines numbered by 7 (on the logarithmic scale). Shown in dark 
is the region located within the urban area of Bratsk-city. 
 



The second type of figures presents two-
dimensional transects of the fields of the pollution 
danger function for Bratsk-city, calculated with the 
account of contribution from neighboring populated 
centers. The larger the contour line number the larger 
is the contribution from the emission sources, located in 
the corresponding parts of the region, to air pollution 
of the Bratsk-city and of the localities around it. Most 
dangerous regions are those outlined with line number 7 
(on the logarithmic scale). The relative contributions of 
the sources to air pollution in Bratsk have weights 
between 100 and 10%. The region encompassed by 
contour lines, numbered 7 and 6, corresponds to 10 to 
1% relative contribution to pollution of the lower 150-
m-thick layer. The region between 6 and 5 contour lines 
corresponds to 1 to 0.1% contribution, etc.  

As analysis shows, the danger functions for the 
pollution sources in the urban atmosphere strongly 
depend on the direction and intensity of the 
background flow, as well as on local circulation, 
formed under the impact of this flow. As wind velocity 
increases and changes its direction, the region affected 
by the emissions grows accordingly in size and changes 
in shape (Fig. 4). As numerical experiments and field 
studies demonstrate, aerosol concentration may vary by 
an order of magnitude, during the period of a day as 
short, owing to diurnal variation of the atmospheric 
processes. Thus, we see from what have been discussed, 
that even at a constant-level atmospheric emissions 
independent of the current atmospheric conditions, the 
permissible levels of atmospheric pollution can hardly 
be achieved with the industrial technologies that exist 
now in Bratsk. Creating of improved environmental 
control systems that are based on the health-ecology 
standards and ecological criteria is needed. 

 

6.2. Measurement results 

 

Figures 5a$d show the diurnal behavior of the 
concentrations of finely dispersed and submicron 
aerosol fractions. Quite distinct is the day-to-night 
change in aerosol concentration; which is characteristic 
of urban aerosols, and is a result of increased 
anthropogenic activity during day-time and, possibly, 
some atmospheric processes of photochemical gas-to-
particle conversions. 

Additionally, we have analyzed the spatial 
distributions of concentration of the submicron and 
finely dispersed aerosols. In particular, we have 
calculated the probability of occurrence of some aerosol 
concentrations at a given location. This analysis enables 
revealing which regions contribute to aerosol 
overburden of a given location, and provides for 
estimating air quality in this place. One such 
distribution is depicted in Fig. 6. 

From the figure we see that, while moving into the 
plume, the percentage of large concentrations rapidly 
increases, that is the mode of the concentration 
distribution shifts towards larger values. Under the 

background conditions, the probability of occurrence 
for the concentration either has a peak at smaller values 
or monotonically decreases with increasing 
concentration without any peaks. 

 

 

 

 
FIG. 5. Time behavior of the fine (a) and coarse (b) 
aerosol fraction measured on July 10, 1990, the same 
on July 9, 1990 (c, d). 
 

 
 

FIG. 6. Distribution of aerosol concentrations for 
polluted zone of Bratsk-city on July 10, 1990. 
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6.3. Comparison of the numerical and measurement 
results 

 

It is interesting to make a comparison between the 
theoretical and experimental data obtained.  This 
comparison, however, must be regarded merely as an 
estimate. The first reason for this is that the 
meteorological situations can never be reproduced and 
also because measurements at a single point are random 
in nature, whereas the simulations were performed 
within a deterministic framework. Besides, the 
simulations made did not allowance for the background 
level of the earlier existing aerosol and as well as for 
the prior transport of atmospheric air from neighboring 
regions. Therefore, such a comparison was used here 
simply to estimate the emission rates of aerosol sources, 
specifically, the source powers were tuned so as to 
obtain matching between the experimental and 
theoretical levels of particle concentration and size 
spectra. 

Such normalization can be considered by an 
example of plume from the Bratsk timber plant that 
was flowing toward the region of Bratsk hydroelectric 
power station. The appearance of this plume may be 
seen in Fig. 5. 

It should be noted that finely dispersed aerosol 
fraction was found to be more sensitive, i.e., faster 
responding, to pollution than the submicron one, as is 
obvious from Figs. 5a and b. In 4$6 hour, the 
concentration of finely dispersed aerosol fraction has 
already reached its steady-state level (Fig. 5a), whereas 
the submicron fraction only began to respond to this 
concentration change (Fig. 5b). 

As a result, in such situations the calculations give 

full concentration of aerosol particles (Nmax = 105
 cm$3), 

while the measured values are an order of magnitude 
lower. This led us to a conclusion that assumed source 
power might have been overestimated by as much as a 
factor of three. Subsequent comparisons with measurements 
conducted nearby the source confirmed this. 

 
7. CONCLUSIONS 

 
In this paper we have presented some results that 

demonstrate the potentialities of mathematical models 
in applications to solving some problems in the 
environmental protection. Although being quite 
sophisticated, they could be an effective tool for 
predicting consequences of aerosol emissions of both 
anthropogenic and natural origin. One such model, 
based on a limited set of aerosol transformation 
processes, has been used here and gave realistic results 
on the atmospheric aerosol characteristics needed. 

The measurement data obtained during the summer 
mission in 1990 as well as the simulations of aerosol 
pollution of the atmospheric over Bratsk have shown 
that: 

1) The Bratsk water storage basin forms a well 
detectable microclimatic system. Complex orography 

and nonuniformity of the surface heating result in a 
complicated local air circulation.  

2) The concentration of finely-dispersed (0.05 μm) 

aerosol (104$106 cm$3) exceeds the background level by 
one to two orders of magnitude, while that of the 

submicron (0.05$2.0 μm) aerosol ranges from 102 to 

104 cm$3, that is several order of magnitude above the 
background level. 

3) Using the spatiotemporal structure of solutions 
of the conjugate problem, it is possible to detect 
locations of sources contributing to pollution of a given 
area. 

4) Good agreement between the measured and 
simulated diurnal behavior of aerosol concentrations 
shows that the model can successfully be used to 
estimate the power of pollution sources. The pollution 

rate for Bratsk-city was found to be 108 cm3s$1. 
Finally, we have determined the aerosol particle 

size distribution functions for some parts of Bratsk. 
They characterize levels of air pollution near a source 
and at different distances from it. 
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