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Diagnostics of an ionospheric channel is based on an analysis of ionograms of 
vertical, slant, and return-slant sensing.  This analysis calls for a solution of two 
general problems: 1) ionogram processing, that is, the correction and improvement 
of images and selection of points (moments of arrival) of a signal; 2) tracing tracks 
through the points for their subsequent referencing to specific propagation modes.  
To solve the first problem, statistical methods of image processing are used.  To 
solve the second problem, the Houpfield method of artificial neuron nets (ANNs) is 
used.  Because of the complex character of tracks against the intense background 
noise the modified rotor model has been used.  Proper choice of the initial 
configuration has provided the fast convergence of the net.  Ionograms recorded 
with chirp-zonde at the ISTP, Irkutsk, in 1987$1996 has been used to check the 
model.  Analysis of the results has shown that this approach gives good results.  It 
is promising for ionogram processing. 

 

INTRODUCTION 

 
The basic tendency of ionospheric informatics is 

the decrease of the access time to current diagnostic 
information about the state of the ionosphere.  
Reception of new data in real time is of principal 
importance. First, this makes much easier organization 
of geophysical and radio physical experiments on the 
study of the ionosphere.  Second, this is necessary for 
solving number of practical problems, especially in the 
framework of the modern concept of allocation of 
working frequencies for short-wave (SW) 
communication and radar sensing. 

Large information flows can be processed in real 
time only in case of automatic ionogram processing for 
different regions of ionospheric sensing. 

In general, the ionogram can be considered as a 
raster image of the range-frequency characteristic 
registered by an ionozonde.1  Each pixel of the image 
(ionogram) is specified by two parameters: coordinates 
(frequency and delay) and brightness (amplitude) 
(Figs. 1$3a).  Thus, the examined image can be 
represented in the form of N×M matrix of coordinates 
A[Fi, Dj].  As a result of processing, it is necessary to 
trace connected lines through characteristic points 
(determined by a certain criterion), that is, to trace 
tracks subsequently referred to a specific propagation 
mode. 

In this problem formulation it is necessary: 
a) to process the ionogram including image 

correction, that is, to perform pulse noise filtration, 

correction of the amplitude characteristics, noise 
suppression, and so on; to improve the image quality, 
that is, to increase image contrast, to identify 
fragments characterized by the connection property, 
and so on; to identify the signal characteristic points 
corresponding to physically significant characteristics of 
the image; 

b) to trace tracks and to refer them to a specific 
propagation mode. 

 
1. IONOGRAM PROCESSING 

 
Problems of ionogram processing are closely 

interconnected by methods of their solution.  These 
methods beam an the presence of characteristic noise 
whose properties is connected with the influence of a 
medium, the parameters of transceiving systems, and so 
on.  Because the noise is present practically always, the 
image can be interpreted as random processes of two 
variables, that is, as random fields.  Therefore, 
statistical methods of data processing,2$6 can be used 
for image processing.  Efficiency of the methods is 
determine by statistical properties of noise.  A model of 
noise includes statistical description of pixels forming 
the image and the type of interaction between noise and 
signal. 

As an image model, the standard Rayleigh model 
of distribution was used, and as an analytical 
description of the type of interaction between noise and 
signal, the multiplicative model was used.  This model 
permits local methods of smoothing, highly efficient and 
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adaptable to the same character, to be used for image 
correction.  These methods allow to estimate the field 
of unnoisy images by way of analysis and processing of 
a limited number of fragments having sufficiently small 

sizes.  As a fragment of ionograms, a 5×5 square of 
points of matrix {A} was used.  Selection of these sizes 
was determined by the following conditions: 

 
 a b 

 
FIG. 1. The vertical sensing ionogram. 

 

 
 a b 

 
FIG. 2. The slant sensing ionogram. 

 

 
 a b 
 

FIG. 3. The return-slant sensing ionogram. 
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a) band, where the signal remains practically 
unchanged; 

b) sonde resolution; 
c) requirements for sufficient statistics of the 

selected data volume and minimum computing time. 
The image was processed in the regime of sliding 

fragment with overlap. 
In the first stage, the data were corrected to 

eliminate vertical and point interference and to fill 
randomly emitted data.  The correction was performed 
by the linear prediction method, when the corrected 
parameter was taken to be a sum of the parameters of 
adjacent pixels with some weights.  In the present 
work, the following formula was selected5: 
 
Bi,j = 0.3(Ai,j$1 + Ai$1,j) + 0.2(Ai$1,j$1 + Ai+1,j$1). 
 
Pulsed interferences were removed using a medium 
filter. 

When smoothing the noise, operations decreasing 
the noise level without blurring of the brightness 
gradients are of particular interest.  Most efficient are 
the methods based on local ordinal statistics.  Thus, to 
remove noise, a technique based on elimination of 
contributions to the averaged parameter of counts that 
did not satisfy the given model of uniformity was 
implemented.  The idea of the technique lies in the fact 
that within a larger fragment window (for example, 
5×5) fragments with smaller sizes (3×3) are selected.  
For each fragment the average and the standard 
deviation are calculated.  The average brightness in the 
vicinity of pixel with minimum standard deviation is 
assigned to the central pixel of the fragment.7  To 
increase the speed of operation, the expression 
 

S(k) = ∑
n = 1

9

 |(Ai,j $ An(k))|,    k = 1, 9 . 

 
was used instead of the standard deviation as a criterion 
for uniformity.  Here, Aij is the brightness of the 
central point of the large fragment; An(k) is the 
brightness of the nth point of the kth small fragment.  
In this case, Aij was substituted by the mean brightness 
within the fragment with the minimum S(k).  It should 
be noted that this approach does not require any a 

priori knowledge and is fally determined by the scene 
character. 

In the next stage, details of image were 
constructed using the nonlinear adaptive amplitude 
transform, which was constructed on the basis of 
measurement and analysis of a histogram of signal 
distribution.  The function of signal transform was 
adjusted so that the transformed signal has the required 
distribution histogram.  For the examined problems 
good results were obtained when the uniform 
distribution was used as an output distribution.  The 
transform function in this case had the form 
 

D = ( D max $ Dmin)PA(A) + Dmin , 

 
where PA(A) is the distribution function of the initial 
image probability and Dmax and Dmin are the maximum 
and minimum levels of the transformed signal.  The 
result of this transformation is the increase of contrast 
of the image fragments with most often occurring signal 
values. 

Results of image constructing permits us to 
proceed to image segmentation by the methods of 
threshold processing.  Because we can consider that 
threshold for the examined problems are constant in a 
certain vicinity of the image pixel and depend on the 
local image characteristics as well as on pixel 
coordinates we can use the processing methods with a 
variable threshold.  The idea of processing lies in the 
fact that the brightness of the image is always 
nonuniformly distributed.  Therefore, the selection of 
the appropriate threshold allows us to the recognize the 
fragments containing valuable information and noise. 

Because to describe the brightness nonuniformity 
with any known function is a complicated problem, 
threshold estimations were implemented within a local 
fragment.  If the fragment contains object and noise, its 
brightness histogram must be (at least) bimodal.  The 
minimum brightness of the histogram for the pixel 
between the modes gives the local threshold for 
identification of the object against the background 
noise in the given image fragment.  When the fragment 
contains only object or noise, it histogram is unimodal 
and the local threshold cannot be determined for it.  In 
this case, it was assigned by the way of interpolation of 
the local thresholds determined for the nearest bimodal 
fragments.  As a result, quasiuniform fragments were 
identified in the ionogram corresponding to signal 
modes. 

Thus, as a result of implementation of the 
algorithms described above, we succeeded to a large 
measure in noise removal, noise smoothing, and data 
compression leaving only the points with maximum 
amplitudes.  In the last stage, for the selected 
fragments we determined the moments of signal arrival 
taken to be the local maxima for each separated 
fragment.  As a result, we obtained the image in the 
form of clouds (matrix) of points with significant 
amplitudes in the coordinates: group path length $ 
working frequency (Figs. 1$3b).  The matrix of points 
so obtained was used to trace the tracks and to 
interpret them. 

 
2. TRACK TRACING 

 
To trace the tracks, the method of artificial neuron 

nets (ANNs) was used that was successfully employed 
in high-energy physics.8$12  Efficiency of the method is 
provided by the ability of neuron net to evolve to such 
equilibrium conditions, which correspond to the  
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minimum of the energetic function.  For proper choice 
of the weight function, the energetic function minimum 
must correspond to the optimum point distribution 
along the tracks.  By  virtue of the similary of the 
problem, the method of neuron nets was used for 
identification of tracks in the vertical sensing 
ionograms9 and then for other types of ionograms.10 

To solve the track identification problems in the 
ionograms, the Houpfield ANN (HNN) was selected.11  
The HNN advantage is in the ability of finding the 
optimum solution to a certain problem without 
preliminary learning by minimization of corresponding 
a priori assigned functional that contains the 
information about the solution.  The HNN is the fully 
connected net, that is, the net that has the path of 
signal transmission from the neuron outputs to their 
inputs.  A response of these nets to the external 
information is dynamic, because the calculated output 
passing through feedbacks modifies the input, after that 
the output is calculated once more, and all process is 
repeated.  For the stable net successful operations lead 
to the achievement of the stable state. 

Our analysis of ionograms (see Figs. 1$3a) has 
shown that the lines approximating tracks of one type 
strongly differ by their shapes and lengths.  Thus, 
tracks of the ionograms cannot be fully described by 
straight lines or sections of circles.  This makes their 
analytical description difficult.  Therefore, only local 
approximation can be considered.  For this aim, a 
circular arc is best suited: in this case, a track will be 
formed by arcs of different lengths and curvatures.  
Such a local character also must have neuron 
interaction.  Because the ionograms are characterized by 
complex tracks against intense background noise, under 
these conditions the modified Houpfield rotor model 
was selected. 

In the context of the HNN it was assumed that 
neurons are the rotors (Fig. 4).  The dynamic variable 
is the angle.  These rotors interact with each other and 
with the vector Lij connecting them, that is, the 
neurons are characterized by their values, coordinates, 
and slopes.  It was assumed that signals fall fairly well 
on a circle.  And the neuron net should locate the 
vectors along the tangents to this circle and strongly 
decrease the vectors that do not lie on any actual track. 

 

 
FIG. 4. Modified rotor model. 

 

Thus, each neuron corresponds to the vector si 
whose modulus characterizes the intensity of influence 
of this neuron on the others and whose sense should 
ideally coincide with the tangent to the track.  Because 
the track has variable curvature and salient points, only 
neurons of a certain local fragment can interact.  This 
is achieved by introduction of a robust multiplier in the 
weight function Tij that plays the role of the filter.  
Going to the field terms, we introduced the vector hij 
as a field generated in the point i by the neuron j 
 

hij = Tij si . 
 

Then the total field Hi in arbitrary point can be 
determined as a vector sum of fields from all neurons 
 

mi = ∑
j

 hij = ∑
j

 (Tij si). 

 

Considering the remarks about the local character, 
we assume that track is formed by neurons whose 
eigenvectors are closest in their senses to the field 
vector in this point.  As a measure of proximity, it is 
convenient to take the scalar product of the vectors si 
and Hi.  Then the energetic function of the system can 
be written in the form 
 

E = $ 

1
2
 ∑

i

 Hi si = $ 

1
2
 ∑
i,j

 si Tij sj . 

 

Its minimum corresponds to the optimum point 
distribution along the tracks for the proper selection of 
the weight function. 

The problem of track identification reduces to the 
organization of evolution of the neuron net states that 
provides its convergence to the configuration 
minimizing the system energetic function.  An 
interactive procedure for search of this HNN 
configuration was constructed as a successive 
calculation of the field in the points of location of the 
neurons, determination by each neuron of its state, and 
assignment of a new value of the vector for the next 
interaction step.  The new value of the vector modulus 
for the ith neuron was determined by the formula12 
 

| si | = tanh(| Hi |/T), where T = 1.5. 
 

A new sense of the vector was assumed coincident 
with the field direction in the point.  The vector thus 
calculated was used for determination of vectors of 
other neurons already in the given step of the HNN 
evolution.  In the next step, all procedure was 
repeated.  After some iterations (their sufficient number 
was determined by the smallness of the energetic 
function increment for the examined iteration), the 
vectors of neurons were aligned with a certain error in 
the direction of tangents to the track in the points of 
neuron location. 
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Final track reconstruction was performed with the 
help of the algorithm reading the information from the 
ANN. Two points were considered to be connected if their 
interaction made the minimum contribution to the 
energetic function. Basic problems in this stage are: 
1) formulation of conditions of breaking of one track and 
starting of a new track, if the tracks are located nearly; 
2) proper track connection when they are intersected. 
From this depends the adequate interpretation of the 
ionogram. Large percentage of errors was introduced in 
this stage. 

After tracing of the tracks, their referencing to 
specific modes of propagation was required. This is 
sufficiently complex problem because the technique of 
referencing strongly depends on a sensing regime and 
requires special consideration. One of the variants of 
track identification in case of slant sensing was considered 
in Ref. 13. 

 

CONCLUSION 

 

The above-considered approach has been 
implemented as a software package and employed for 
processing if ionograms of vertical, slant, and return 
 

slant sensing of the ionosphere recorded with a sonde 
with a chirp modulation at the ISTP.1 As examples, 
Figs 1$3b illustrate the results obtained for 
ionograms of each types. It took 15$20 s to process 
one ionogram on a PC IBM 486DX2, depending on 
the ionogram type. 
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