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A method is proposed for solving the parabolic equation for propagation of a 
monochromatic electromagnetic wave through a nonlinear medium. Two cases are 
discussed, namely, the absence and the presence of the wind in the atmosphere. In 
the former case the use of an axially symmetric beam model seems to be justifiable 
and the parabolic equation reduces to the Bernoulli equation.  In the second case 
(in the presence of wind) the equation reduces to an integro$differential equation, 
which can be solved by the iteration method. 

 
Traditionally all the methods for solving the 

parabolic equation dealt with linear media.1, 2 That 
means that the dielectric constant of a medium is taken 
to be independent of the electromagnetic wave 
intensity. 

This paper presents an approximate method for 
solving the parabolic equation for the case of nonlinear 
media.  This task is very important when solving 
problems in atmospheric optics3$5 and in the studies of 
the Earth's crust.6,7 However, in contrast to 
atmospheric optics, the propagation of electromagnetic 
waves in the nonlinear (but homogeneous) earth's crust 
has been only poorly studied. 

We take the parabolic equation for the case of an 
axially symmetric problem as the basis for our study.  
As shown in the monograph,4 the model of an axially 
symmetric beam is not always valid.  For instance, in 
the presence  of wind, as it follows from the 
calculations in the approximation of a thin lens, the 
beam, while propagating in the medium, will not keep 
its axial symmetry (see Ref. 4).  In this case we use the 
other approach that is based on the results obtained in 
the monograph by V.I. Klyatskin.12 

Let us first assume that axial symmetry holds 
(there is no wind in the atmosphere).  Then the initial 
parabolic equation is as follows: 

 

∂2
E
∼

∂r2
 + 

2
r
 
∂E
∼

∂r  + 2i k
∼
0 
∂E
∼

∂z  + k
∼2

0 ε
≈
(r, z) E

∼
 = 0. (1) 

 

Here  
 

k
∼2

0 = <ε(r) > k2
0;  k0 = 

w0

c
 ;  ε

≈
(r) = 

ε(r) $ <ε(r)>

 <ε(r)>  . 

 

We assume that for a randomly inhomogeneous 
medium the dielectric constant is 

ε(r) = <ε(r)> + ε
∼
(r), 

 

where <ε(r)> is the average value of the constant, and 

ε
∼
(r) is its fluctuating part. But, in a nonlinear medium 

we have 
 

ε
≈
(r, z) = ε

≈
1(r, z) + ε

≈
2 (r, z)⏐E⏐2. (2) 

 

Then Eq. (1) takes the form 
 

∂2
E
∼

∂r2
 + 

2
r
 
∂E
∼

∂r  + 2i k
∼
0 
∂E
∼

∂z  + k
∼2

0 ε
≈
1(r, z) E

∼
 + 

 

+ k
∼2

0 ε
≈

2(r, z)⏐E
∼
⏐2 E

∼
 = 0. (3) 

 

At ε
≈

1(r, z) = 0, ε
≈

2(r, z) = β0 this equation was first 
studied by A.M. Prokhorov and V.N. Lugovoy8

 and at 

ε
≈

1(r, z) = 0, ε
≈

2(r, z) = iβ0 this equation was used for 
studying the influence of nonlinearity of an active 
medium on the spatial structure of electromagnetic field 
in a resonator.9 In this case the two-dimensional 
problem is to be considered. 

Let us next represent the scalar wave field in 
Eq. (3) as 

 

E
∼
(r, z) = A(r, z) exp [iΦ(r, z)], (4) 

 

where A(r, z) is the wave amplitude; Φ(r, z) is the 
wave phase; in this case we believe that A(r, z) and 
Φ(r, z) are real numbers.  Omitting calculation of the 
derivatives and separating real and imaginary parts, 
taking into account  Eq. (4), the initial equation may 
be presented in the following form.  For the real part 
we have 
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∂ 

2
A

∂r 

2  + 
2
r
 
∂A
∂r  + i(r, z) A + β(r, z) A3 = 0, (5) 

 

where 
 

i(r, z) = k
∼2

0 ε
≈

1(r, z) $ ⎝
⎛

⎠
⎞∂Φ

∂r

2

 $ 2 
∂Φ
∂z  ; (6) 

β(r, z) = k
∼2

0 ε
≈

2(r, z). 
 

For the imaginary part the following equation is 
obtained: 
 

2 
∂A
∂r  

∂Φ
∂r  + 2 k

∼
0 
∂A
∂z  + 

⎝
⎛

⎠
⎞∂ 

2Φ
∂r 

2  + 
2
r
 
∂Φ
∂r  A = 0. (7) 

 

First we consider Eq. (5).  This equation will be 
solved using the  substitution 

 

r = a0 τ 

k;  A = b0 τ 

c M 

p (τ > 0; M > 0). (8) 
 

Here =0, b0, k, “, and p are the real parameters. 
At p = 1 such a substitution was made in the 

Ref. 10.  The author of this paper generalized it for the 
case of arbitrary p values. Here τ is the new argument; 
M is the new function.  Substituting Eq. (8) into the 
Eq. (5) we bring this equation to the form 

 

d 

2
M

dτ 

2  + 
(p $ 1)

M
 ⎝
⎛

⎠
⎞dM

dτ

2

 + 
(2c + k + 1)

τ  
dM

dτ  + 

+ 
c (c + k)

pτ 

2  M + 
a
2
0 k

2

p
 i(τ, z) τ 

2(k$1) M + 

+ 
a
2
0 k

2 b2
0

p
 β(τ, z) τ 

2(k+c$1) M2p+1 = 0. (9) 

 

No exact solution of Eq. (9) can be achieved, in 
the general case.  Therefore Eq. (9) will be solved 
using an approximate method.  Let us suppose that the 
following inequality holds: 

 

d 

2
M

dτ 

2  << 
(p $ 1)

M
 ⎝
⎛

⎠
⎞dM

dτ

2

. (10) 

 

When solving such an inequality we obtain 
 

M 

2$p

2 $ p
 << C1 τ + C2,  (11) 

 

where q1, q2 are the constant values determined from 
the boundary conditions.  The constants q1 and q2 may 
be chosen so that the inequality (11) takes place.  Then 
we obtain the quadratic equation 

⎝
⎛

⎠
⎞dM

dτ

2

 + 
M

(p $ 1)
 
(2c + k + 1)

τ  
dM

dτ  + 

+ 
c(c + k)

p(p $ 1) τ 

2 M 

2
 + 

a
2
0 k

2 i(τ,z)

p(p $ 1)
 τ 

2(k$1)
 M

2
 + 

+ 
a
2
0 k

2 β(τ, z) b2
0

p(p $ 1)
 τ 

2(k+c$1) M2p+2 = 0. (12) 

 

If this equation is solved as a quadratic one, 
relative to dM/dτ, and the radicand is expanded into a 
power series, the equation reduces to the Bernoulli 
differential equation, which can easily be integrated. 

When solving this quadratic equation we obtain 
 

dM

dτ  = $ 
M (2c + k + 1)

2(p $ 1) τ  ± 
M

2
 × 

× f(τ, z) $ β(τ, z) g(τ, z) M 

2p.  (13) 
 

The notations used here are as follows: 
 

f(τ, z) = 
(2c + k + 1)2

(p $ 1)2 τ 

2  $ 
4c (c + k)

p(p $ 1) τ 

2 $ 

$ 4i(τ, z) 
a
2
0 k

2

p(p $ 1)
 τ 

2(k$1); (14) 

g(τ, z) = 
4a2

0 k
2 b2

0

p(p $ 1)
 τ 

2(k+c$1). (15) 

 

Assume that =0 > 0, b0 > 0, p > 1.  Then the 
inequality g(τ, z) > 0 always holds.  The inequality 

 

f(τ, z) = 

(2c + k + 1)2

(p $ 1)2 τ 

2  $ 

4c (c + k)

p(p $ 1) τ 

2 $ 4 k
∼2

0 ε
≈

1(r, z) × 

× 
a
2
0 k

2

p(p $ 1)
 τ 

2(k$1) + 4 ⎝
⎛

⎠
⎞∂Φ

∂r  

2

 
a
2
0 k

2

p(p $ 1)
 τ 

2(k$1) +  

+ 2 
∂Φ
∂z  

a
2
0 k

2

p(p $ 1)
 τ 

2(k$1) (16) 

 

can be either positive or a  negative function. 
If f(τ, z) < 0, that at β(τ, z) > 0, g(τ, z) > 0 the 

radicand is negative and the equation becomes complex 
that contradicts the accepted condition that the 
function M  is real.  Therefore  we shall assume that it 
is possible to select such parameters when f(τ, z) > 0.  
The radicand at the integer  p = p0 > 1 transforms to 
the following expression: 

 

f(τ, z) $ β(τ, z) g(τ, z) M 

2p0 = 

= f(τ, z) ⎣
⎡

⎦
⎤

1 $ 
β(τ, z) g(τ, z)

f(τ, z)  M 

2p0

1/2

. (17) 

Assuming  that 

β(τ, z) g(τ, z)

f(τ, z)  M 

2p0  << 1, (18) 
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Eq. (17) can be expanded into a series. Then we have 
 

 ⎣
⎡

⎦
⎤

1 $ 

β(τ, z) g(τ, z)

f(τ, z)  M 

2p0

1/2

 ≈ 1 $ 

β(τ, z)
 

g(τ, z)
2 f(τ, z)  M 

2p0

.(19) 

 

Therefore, taking account of Eq. (19), Eq. (13) reduces 
to the Bernoulli equation: 
 

d M

dτ  + 
(2c + k + 1)
2(p $ 1) τ  M ∓ 

M

2
 f(τ, z) ± 

 

± 
1

4 f(τ, z)
 β(τ, z) g(τ, z) M 

2p0+1. (20) 

 

This equation can be reduced to an ordinary linear 
differential equation of the first order by making the 
substitution11 

y = M 

1$n;   n = 2 p0 + 1. (21) 
 

Then Eq. (21) takes the form 
 

dy

dτ + 
(2c + k + 1)

2(p $ 1)
 
(1 $ n)

τ  y ∓ 
1
2
 (1 $ n) f(τ, z) y ± 

 

± 
β(τ, z) (1 $ n)

4 f(τ, z)
 g(τ, z) = 0. (22) 

 

Having solved Eq. (22) with the boundary condition 
 

 

y(τ, z)⏐τ = τ0
 = y(τ0, z), (23) 

 

we obtain the following expression: 

y(τ, z) = exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
τ0

τ

 C0(τ, z) dτ  × 

× 
⎩
⎨
⎧
y(τ0, z)

 

$ ⌡⌠
τ0

τ

 dτ′
 

D0(τ′, z) × 

× 
⎭
⎬
⎫

exp 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
τ0

τ′

 C0(τ′′, z) dτ′′   . (24) 

 

Here the following designations are introduced: 
 

C0(τ, z) = 
1
2
 

(1 $ n)
τ(p0 $ 1)

 × 

 

× {(2c + k + 1) ∓ (p0 $ 1) τ f(τ, z)}; (25) 

D0(τ, z) = 
β(τ, z)

4 f(τ, z)
 (1 $ n) g(τ, z). (26) 

 

Equation (24) can be rewritten in the old variables 

A(r, z) = b0 τ 

c exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ 
1
2
 ⌡⌠
τ0

τ

 C0(τ, z) dτ  × 

 

× 
⎣
⎢
⎡
{A$2(τ0, z)

 
b 

2
0
 
τ 

2c
0 } $⌡⌠

τ0

τ

 dτ D0(τ, z) × 

 

× 
⎦
⎥
⎤

exp 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
τ0

τ

 dτ′ C0(τ′, z)   

$1/2

,  (27) 

 

where 
 

τ = [a$1
0  r]1/k;  dτ = 

1
k
 a$1/k

0  r1/k$1 dr. 

 

Unfortunately, we do not know the law that 
describes the wave phase.  For simplicity, we assume 
that the phase is given by the parabolic law 

 

Φ(r, z) = Φ0(z) + 
r
2

2a2 Φ1(z), (28) 

 

whence it follows that 
 

∂Φ
∂r  = 

r

a
2 Φ1(z),   

∂2Φ
∂r2

 = 
1

a
2 Φ1(z). 

 

From Eq. (7) we have for the imaginary part that 
 

2 
∂A
∂r  

r

a
2 Φ1(z) + 2 k

∼
0 
∂A
∂z  + 

⎣
⎡

⎦
⎤1

a
2 Φ1(z) + 

2

a
2 Φ1(z)

 A = 0, 

 

from that we find 
 

Φ1(z) = $ 

2 k
∼

0 
∂A
∂z

3

a
2 A + 

∂A
∂r  

r

a
2

 . (29) 

 

Given `, 
∂A
∂r , and 

∂A
∂z , using this formula, we find  

Φ1(z).  At r = 0, Φ(r, z) = Φ0(z). 

Now we consider the case when there is a  wind in 
the atmosphere and the axial symmetry cannot be used.  
Let us consider the parabolic equation12 

Δ⊥U + 2i k
∼
 
∂U
∂z  + k

∼2 ε
≈
(z, ρ) U(z, ρ) = 0. (30) 

In this case Δ⊥U = 
∂2

U

∂x2  + 
∂2

U

∂y2  ; ρ = {x, y}. We use the 

V.I. Klyatskin method12 and write this equation with the 
boundary condition 
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U(0, ρ) = U0(ρ) (31) 

 

in the form of the integro-differential equation 
 

U(z, ρ) = U0(ρ) exp 

⎣
⎢
⎡

⎦
⎥
⎤

i 
k
∼

2
 ⌡⌠

0

z

 dξ ε
≈
(ξ, ρ)  + 

 

+ 

i

2k
∼ ⌡⌠

0

z

 dξ exp 

⎣
⎢
⎡

⎦
⎥
⎤

i 
k
∼

2
 ⌡⌠
ξ

z

 dη ε
≈
(η,ρ)  Δ⊥U(ξ,ρ). (32) 

 

And now assume that 
 

ε
≈
(z, ρ) = ε

≈
1(z, ρ) + ε

≈
2(z, ρ)⏐U(z, ρ)⏐2. (33) 

 

Substituting Eq. (33) into Eq. (32) we obtain a very 
complicated integro$differential equation 
 

U(z, ρ) = U0(ρ) exp 

⎣
⎢
⎡
i 

k
∼

2
 ⌡⌠

0

z

 dξ {ε
≈

1(ξ, ρ) + 

 

+ 
⎦
⎥
⎤

ε
≈

2(ξ,
 

ρ)⏐U(ξ,
 

ρ)⏐2}  + 
i

2k
∼ ⌡⌠

0

z

 dξ × 

 

× exp 

⎣
⎢
⎡
i 

k
∼

2
 ⌡⌠
ξ

z

 dη {ε
≈

1(η, ρ) + 

 

+ 
⎦
⎥
⎤

ε
≈

2(η,

 

ρ)⏐U(η,

 

ρ)⏐2}  Δ⊥U(ξ,ρ), (34) 

 

and this equation can be solved only using the iteration 
method.  In the first approximation we have  
 

U(z, ρ) = U0(ρ) exp 

⎣
⎢
⎡
i 

k
∼

2
 ⌡⌠

0

z

 dξ {ε
≈

1(ξ, ρ) + 

 

+ 
⎦
⎥
⎤

ε
≈

2(ξ,
 

ρ)⏐U(0,

 

ρ)⏐2}  + 
i

2k
∼ ⌡⌠

0

z

 dξ × 

 

× exp 

⎣
⎢
⎡
i 

k
∼

2
 ⌡⌠
ξ

z

 dη {ε
≈

1(η, ρ) + 

 

+ 
⎦
⎥
⎤

ε
≈

2(η,

 

ρ)⏐U(0,

 

ρ)⏐2}  Δ⊥U(0,ρ), (35) 

and so on. 
Special attention must be given to  Ref. 13, that 

has stimulated our investigations.  The randomly 
inhomogeneous media are not considered in the paper 
but the propagation of soliton wave is studied based on 
the generalized nonlinear Schrodinger wave equation 
for the homogeneous medium, Refs. 14 and 15.  

It is not difficult to generalize this approach for 
the case of a pulsed wave propagation in conducting 
(randomly inhomogeneous) nonlinear media that is very 
important when using MHD generators for 
investigating the Earth's crust and in laser applications 
to atmospheric studies. 
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