
524   Atmos. Oceanic Opt.  /June  1998/  Vol. 11,  No. 6 A.V. Arguchintseva 
 

0235-6880/98/06  524-03  $02.00  © 1998 Institute of Atmospheric Optics 
 

ON PROBABILITY APPROACH TO MODELS OF ECOLOGICAL REGIONING 

AND RATIONAL NATURE EXPLOITATION 

 

A.V. Arguchintseva 
 

Irkutsk State University 
Received February 4, 1998 

 
The more general approach to stochastic modeling of pollutant distribution is 

considered. The model is based on the direct (second) Kolmogorov equation for 
transitional probabilities written in phase coordinates. Successive closings of this 
equation give the possibility to construct the distribution laws in the form of 
probability density function for pollutant concentration. 

 
Any phenomena (for example, meteorological, 

hydrological) in the process of development in time 
include regular and random components. The random 
component plays a part of interference, which influence 
on results of economic activity should be minimized.1 
However, to do this, information about not only the 
value of this interference, but also about the 
probability of occurrence is necessary. Difficulties of 
solution to the above problem is often connected with 
the entirely absent, incomplete, or not representative 
measurement data. Therefore, when forecasting possible 
consequences for economic results, very efficient is the 
mathematical simulation allowing us to try a great 
variety of situations. 

Difficulties connected with the non-ergodicity of 
natural phenomena (inhomogeneity of processes in 
time) can be overcome by averaging  by cases, rather 
than in time. As such cases we can take the values of 
hydrometeorological parameters related to standard 
periods of observation. Because cases are dated to 
different years, they can be considered statistically 
independent with a fair degree of assurance. It should 
be noted that observations at hydrometeorological 
stations are discrete set of natural system states. At 
every instant of time, the system is in one of these 
states and transits from one state to another with time. 
Series of such random processes can be considered as a 
Markovian process without consequences (Markov 
chain). 

Probability density of transition for the Markov 
chain fits the Smolukhovskii integral equation,2,3 which 
solution at certain assumptions about the probabilities 
of transition leads to solution of the second (direct) 
Kolmogorov equation 
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where p = p(t0, x0; t, x) is the probability density of 
system transition from the state x0 to the state . for the 
time from t0 to t. It is natural that over the entirely 
variation range of ω  

⌡⌠
ω

 p(t0, x0; t, x) dx = 1,  where ! ≥ 0. 

 
In one-dimensional case, when the state of system 

is determined by a single parameter ., the coefficient 
`(t, .) is the mean rate of systematic change of the 
coordinate .; the coefficient b(t, .) is intensity of 
random oscillations about this mean. 

In this paper, construction of probability models is 
considered using substance spread in liquid and gaseous 
media as an example. 

Let us pass to the phase coordinate s in Eq. (1), 
where s is pollutant concentration 
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where p = !(t, s); ` = 
∂ s$

∂t
 is the rate of average 

concentration change in the range t ∈ [0, T]; 
 

B = 
1
2
 ⎝
⎜
⎛

⎠
⎟
⎞∂s

∂t
 $ 

∂ s$

∂t
 

 

2

=  

1
2
 ⎝
⎛

⎠
⎞∂s′

∂t

 

2

 . 

 

Here, the bar above parameters is for averaging, and 
primed parameters are deviations of instant values for 
the average ones. 

Let us consider the possibility to close Eq. (2). To 
this end, the equation of transfer and turbulent 
diffusion of pollutant s is written in divergent form 
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∂t
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∂ujs 

∂xj
 + αs = Q + νjk 

∂2s

∂xj ∂xk
 , (3) 

 

where j, k = 1, 3  are running numbers of coordinates; 

t is time; uj is velocity component along the  
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corresponding coordinate xj; α is the coefficient of 
pollutant non-conservaticity; Q = Q(xj, t) is the 
function describing sources of the pollutant under 
consideration; νjk are the turbulent diffusion 
coefficients. Equation (3) is written in the tensor form, 
therefore summing is performed by repeating indexes. 

Let us average Eq. (3) using the relations  

uj = u$j + uj
′; s = s$ + s′; Q = Q$ + Q′ and averaging 

properties. 
Let α = const for simplicity, 
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Subtracting Eq. (4) from Eq. (3), we have 
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Let us transform the equation 
 

uj s $ u$j s
$

 = (u$j  + uj′)(s$ + s′) $ u$j s
$ = uj s′ + s$ uj′ 

and substitute it into Eq. (5): 
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In Eq. (6) every term in parenthesis is divergence 

correspondingly for velocity and its fluctuation. For 
incompressible liquid these terms vanish. 

Following Refs. 4 and 5, in linear approximation 
the influence of pollutant on the medium velocity field 
can be neglected, i.e. the turbulent field of medium 
velocity can be considered independent of pollutant 
concentration. Let us introduce the designation 

 

qi = ui′ s′  . (7) 

 

Here s′ is the unknown parameter, i = 1, 3 . 

Let us perform averaging in time Š >> τ (τ is the 
Euler scale). Correcting the detected mistakes from 
Refs. 4 and 5, we integrate Eq. (6) with respect to 
time from t to t + τ 

s′(t + τ) = s′(t) + 
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To perform the averaging (7), we multiply both 
part of the latter equation by ui′(t + τ) and average it in 
the range Š $ τ 
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The first term in the right-hand side of Eq. (8) 
vanishes due to non-correlation of the functions  
ui′(t + τ) and s′(t) under the integral sign, the last term 
vanishes in virtue of Š >> τ. 

From Eq. (8), according to Refs. 4 and 5, we can 
obtain the first approximation for Eq. (7) 

 

ui′ s′
(1)  = $K ij

(1)
 
∂ s$

∂xj
 + Q i

′(1) , (9) 

 

where 
 

K ij
(1)

 = 
1

T $ τ
 ⌡⌠

0

T $ τ

 ui′(t + τ) ⌡⌠
t

t + τ

 uj′(t1) 
∂ s$

∂xj
 dt1 dt; 



526   Atmos. Oceanic Opt.  /June  1998/  Vol. 11,  No. 6 A.V. Arguchintseva 
 

 

Q i
(1)

 = 
1

T $ τ
 ⌡⌠

0

T $ τ

 ui′(t + τ) ⌡⌠
t

t + τ

 Q′dt1 dt. 

 

Having substituted Eq. (9) into Eq. (4), we close 

the equation for S
$
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the left-hand side of which is designated by the 
coefficient ` in Eq. (2). 

Initial conditions for Eq. (10) are as follows:  

s$ = s0 at t = 0. The boundary conditions at horizontal 
boundaries of the integration range D{$X ≤ x ≤ X,  
$Y ≤ y ≤ Y} and at the top boundary at z = Z are set in 
the following way. At that points of boundaries, where 
the velocity vector is directed inward the area of 

solution determination, s$ = st. At the points, where 
the velocity vector is directed outward this area, values 
of concentration are extrapolated to the boundary using 
near-boundary values with the second order of 
approximation. At the low boundary at z = Δ, the 
boundary condition of the third order is set, which 
takes into account pollutant absorption and reflection. 
Here s0 and st are given values. Equation (10) can be 
solved by numerical integration in the Cartesian 
rectangular coordinate system with use of the method 
of dummy areas.6 Finite-difference approximations of 
derivatives in spatial variables are constructed based on 
the integro-interpolation method.6 Problem 
approximation with respect to time is constructed using 
dicyclic complete splitting.  The used scheme of 
splitting by components gives the solution for non-
commutative operators with the second order of 
approximation in time and coordinates. For numerical 

realization of finite-difference equations, the non-
monotonic run is used. 

Solution of Eq. (10) is also of independent 
interest, because it allows calculation of both the field 
of average concentrations and pollutant accumulation 
on the underlying surface. 

To determine the coefficient b in Eq. (2), we use 
Eq. (6) substituting the equation of recursive nest (9) 
into it. Then Eq. (6) should be squared and averaged. 
Having determined the coefficients ` and b, let us 
integrate Eq. (2) using the same numerical method as 
for Eq. (10). The obtained solution allows description 
of pollutant concentration behavior from the purely 
probability point of view. 

The above ideas were realized in different 
particular problems solved by the author.7 

In spite of the concentration s, other 
characteristics of the medium can be considered, for 
example, humidity or temperature. In the general case, 
the probability density function in the Kolmogorov 
equation can be considered as the function of several 
variables. 
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