ABSORPTION SPECTRUM OF HD¹⁶O IN 0.7 µm REGION

V.V. Lazarev, T.M. Petrova, L.N. Sinitsa, Qing-Shi Zhu, Jia-Xiang Han, and Lu-Yuan Hao

Institute of Atmospheric Optics,

Siberian Branch of the Russian Academy of Sciences, Tomsk University for Science and Technology, Hefei, China Received February 4, 1998

The absorption spectrum of HD¹⁶O has been investigated in the 12700– 12900 cm⁻¹ region with the photo-acoustic spectrometer built using the Ti-Sapphire laser with the threshold absorption sensitivity of 10^{-8} cm⁻¹. The absorption lines of the $5v_1$ band of HD¹⁶O have been assigned for the first time. Fifty four energy levels of the highly excited vibrational state (500) have been obtained with the uncertainty from 0.0003 to 0.0066 cm⁻¹. A set of the rotational and centrifugal distortion constants has been determined by solving the inverse problem with the least squares method.

Investigation of the intramolecular interactions in the water vapor molecule requires knowledge of the energy level structure of its isotopic species, in particular, of the nonsymmetrical isotope HDO. The HDO absorption spectra are important for atmospheric applications as well, since the water isotopic species may contribute into atmospheric absorption, especially in transparency windows and microwindows, and influence the propagation of laser radiation through the atmosphere.³ Rovibrational structure of the HD¹⁶O energy spectrum is poorly known, especially in the high energy region. Up to now information about only 15 vibrational states is available in the literature (see Ref. 1 and references therein). The $3v_3$ and $4v_3$ bands have been investigated in recently published Ref. 2 in addition to above-mentioned states. The lack of the data limits to a large extent the possibilities to study influence of intramolecular interactions on formation of the molecular spectrum, especially in the short-wave region.

In this paper, the results of the HD¹⁶O absorption spectrum analysis in the 0.7 μm region are presented.

The absorption spectrum of the $H_2^{16}O$, $D_2^{16}O$ and $HD^{16}O$ mixture was recorded in the 12700–12900 cm⁻¹ region using photo-acoustic spectrometer based on the single-mode tunable Ti-Sapphire laser Coherent 899–29 with the generation linewidth of 50 kHz and the tuning step of 50 MHz. The spectrometer permits investigation of weak absorption lines in the 11300–13000 cm⁻¹ region and has the threshold sensitivity over the absorption coefficient of 10^{-8} cm⁻¹ that corresponds to 1% beam attenuation in a 10-km cell for the classical spectrophotometry. The detailed description of the spectrometer can be found in Ref. 4.

The measurements were carried out at mixture pressure of 17 Torr and temperature of 300 K. The mixture ($H_2^{16}O$, $D_2^{16}O$, $HD^{16}O$) was prepared in such a way that the relative content of $HD^{16}O$

was 50%, whereas $H_2^{16}O$ and $D_2^{16}O$ comprised 25% each. The recorded spectrum contains about 200 absorption lines.

The 23 absorption lines of the main isotopic species of water were found in the analyzed region, these lines were identified using data of Ref. 6 and used later on as reference lines, relative to which the positions of the HD¹⁶O absorption lines were determined. The $D_2^{16}O$ absorption lines were not found that, in the whole, correlates with the concept that transitions of this molecule in the near IR and visible regions are of low probability.

The special computer program⁵ exploiting the pattern recognition theory has been used for line identification. Use of the recognition methods considerably facilitated and simplified the procedure of line identification in the spectrum. The lower-state combination differences method and estimations of rotational and centrifugal distortion constants were used as well.

The line identification procedure included: (a) estimation of the absorption line positions and relative intensities; (b) use of the combination difference method; (c) fitting of the rotational and centrifugal distortion constants followed by prediction calculations of the absorption lines parameters (line centers and intensities) for large values of the rotational quantum number J.

As a result of the spectrum analysis, 120 spectral lines of the $5v_1$ band of HD¹⁶O have been assigned (see Table I), 54 energy levels with $J \leq 9$ and $K_a \leq 4$ (Table II) have been derived. In the identification process, only the absorption lines of HD¹⁶O nonoverlapping with the main isotope lines were used.

Determination of the rotational and centrifugal distortion constants has been performed using the Watson-type Hamiltonian that corresponds to the isolated vibrational state case:

$$\begin{split} H &= E_{\nu} + \left(A^{\nu} - \frac{B^{\nu} + C^{\nu}}{2}\right)J_{z}^{2} + \frac{B^{\nu} + C^{\nu}}{2}J^{2} + \\ &+ \frac{B^{\nu} - C^{\nu}}{2}J_{xy}^{2} - \Delta_{k}^{\nu}J_{z}^{4} - \Delta_{jk}^{\nu}J_{z}^{2}J^{2} - \Delta_{j}^{\nu}J^{4} - \\ &- \delta_{k}^{\nu}\{J_{z}^{2}, J_{xy}^{2}\} - 2\delta_{j}^{\nu}J_{xy}^{2}J^{2} + H_{k}^{\nu}J_{z}^{6} + H_{kj}^{\nu}J_{z}^{4}J^{2} + \dots; \\ J^{2} &= J_{x}^{2} + J_{y}^{2} + J_{z}^{2}, \quad J_{xy}^{2} = J_{x}^{2} - J_{y}^{2}; \\ \{A, B\} = AB + BA \ , \end{split}$$

where J_x , J_y , and J_z are the angular momentum operators; E_v is the vibrational energy; A, B, C are the rotational constants, and Δ_k , Δ_{jk} , Δ_j , δ_k , δ_j ... are the centrifugal distortion constants.

Some of the levels seemed to be perturbed, and they were excluded from the fitting of the Hamiltonian parameters (for example (110) level). We believe that these levels are perturbed due to strong resonance interactions of the (500) state with the (420), (340), (260), and (071) states, which were neglected in our calculations. The parameters obtained as a result of the inverse problem solution, as well as their 68% confidential intervals are presented in Table III. It is seen from Table II that the agreement between the calculated energy levels and the levels derived from the spectrum (the 5th column of Table II) is quite satisfactory with rms deviation being only 0.013 cm^{-1} . In the whole, the reproduction of the experimental energy levels is characterized by the following relations:

$$\begin{split} &\delta < 0.005 & 23.7\% \text{ of all levels} \\ &0.005 \leq \delta < 0.01 & 25.4\% \text{ ,} \\ &0.010 \leq \delta < 0.03 & 37.3\% \text{ ,} \\ &0.030 \leq \delta < 0.05 & 13.6\% \text{ ,} \\ &\text{where } \delta = |E_{\text{calc}} - E_{\text{exp}}| \text{ .} \end{split}$$

TABLE I. Absorption spectrum of HD ¹⁶ O in the 0.7	μm <i>region</i> .	
---	--------------------	--

Wave-	$J'K'_aK'_c$	$J''K''_aK''_c$	Wave-	$J'K'_aK'_c$	$J''K''_aK''_c$	Wave-	$J'K'_aK'_c$	$J''K''_aK''_c$	Wave-	$J'K'_aK'_c$	$J''K''_aK''_c$
number,			number,			number,			number,		
cm ⁻¹			cm^{-1}			cm ⁻¹			cm ⁻¹		
12720.5472	212	313	12772.7615	312	313	12813.7465	422	321	12833.8797	818	717
12721.2192	404	413	12777.9519	413	322	_"_	505	414	12834.2731	808	707
12725.8531	643	642	12781.2188	101	000	12816.8857	413	312	12834.7930	827	726
12728.1255	634	633	12781.5383	1 1 0	101	12817.3020	533	432	12835.1602	818	707
12730.8547	1 1 0	211	12781.8233	312	303	12817.6086	532	431	12835.5137	716	615
12731.7035	633	634	12783.1962	413	$4 \ 0 \ 4$	12818.1152	515	414	12836.5902	725	624
12734.8795	541	$5\ 4\ 2$	12785.9842	514	505	12819.4807	414	303	12836.3781	909	818
12735.0413	101	202	12791.1310	212	1 1 1	12819.5848	643	$5\ 4\ 2$	12836.4990	221	1 1 0
12736.9029	1 1 1	212	12792.2027	303	212	12819.7789	524	423	12836.8447	919	818
12738.3730	533	532	12793.6161	202	101	12819.9789	505	$4 \ 0 \ 4$	12836.9694	928	827
12739.6175	532	533	12795.0477	1 1 1	000	12821.6832	817	726	12837.0625	909	808
12742.3111	$4 \ 4 \ 0$	4 4 1	12795.2066	211	1 1 0	12821.8539	606	515	12837.5413	919	808
12745.3351	423	422	12795.9679	321	312	12822.9371	523	422	12838.1977	817	716
12746.3279	432	431	12801.3997	313	212	12824.1165	634	533	12839.4486	220	1 1 1
12746.6392	431	432	12802.2423	322	221	12824.3441	515	$4 \ 0 \ 4$	12839.6437	826	725
12748.7137	101	1 1 0	12802.7338	615	524	12824.5497	616	515	12844.9819	322	211
12751.1344	523	524	12803.0735	220	211	12824.8092	633	532	12848.3602	928	817
12751.6177	000	101	12803.1554	321	220	12824.9499	514	413	12850.7111	423	312
12752.3956	331	330	12803.8135	$4 \ 0 \ 4$	313	12825.7815	606	505	12851.3158	827	716
12752.4248	330	331	12804.1597	303	202	12826.2421	625	524	12853.6066	726	615
12753.7653	422	423	12805.4342	212	101	12828.2117	707	616	12853.8311	524	413
12754.1048	322	321	12806.9617	312	211	12828.4661	616	505	12854.3049	321	212
12754.7511	212	211	12808.9775	432	331	12829.3679	735	634	12854.6544	625	514
12757.0433	321	322	12810.4180	414	313	12829.7871	717	616	12876.1688	331	220
12759.7305	221	220	12810.7975	423	414	12830.4440	624	523	12876.5356	330	221
12760.3343	220	221	12811.7810	423	322	12830.5151	707	606	12886.7420	431	322
12762.5379	1 1 1	1 1 0	12812.7936	541	$4 \ 4 \ 0$	12831.1428	615	514	12888.3894	523	414
12767.2369	1 1 0	1 1 1	12812.8783	$4 \ 0 \ 4$	303	12831.2312	726	625	12890.9482	533	422
12769.5857	211	212	12813.1377	716	625	12832.0930	717	606	12893.3220	735	624
12771.9285	624	615	12813.3554	313	202	12832.9920	808	717	12896.2428	532	423
									12911.6071	4 4 0	331

	D 1) T			. 1
$J K_a K_c$	E_{exp} , cm ⁻¹	rms,	Ν	δ,	$E_{\text{calc}},$	Δ , cm ⁻¹
		10^{-3} cm^{-1}		10^{-3} cm^{-1}	cm ⁻¹ (Ref. 7)	
0 0 0	12767.1259	_	1	2.5	12766.7205	0.4053
101	12781.2144	3.53	3	-4.3	12780.8005	0.4141
1 1 1	12795.0320	2.24	2	-7.6	12794.6343	0.3975
1 1 0	12797.0437	3.21	3	-	12796.7760	0.2676
202	12809.1243	-	1	-14.3	12808.6972	0.4268
212	12820.9389	2.47	4	-36.1	12820.5610	0.3779
2 1 1	12827.7078	4.79	2	6.3	12827.2926	0.4150
2 2 1	12868.9975	2.12	2	1.7	12868.6219	0.3750
220	12869.2586	1.42	3	1.23	12868.8778	0.3809
303	12850.3312	1.64	2	-8.2	12849.9071	0.4238
313	12859.5276	0.93	2	3.1	12859.1213	0.4062
312	12873.1507	3.21	3	-1.6	12872.7246	0.4258
322	12911.1681	1.31	3	14.8	12910.7847	0.3828
321	12912.4295	3.09	4	11.0	12912.0414	0.3887
3 3 1	12985.4424	4.46	2	-8.2	12985.1068	0.3359
3 3 0	12985.4552	6.67	2	-3.1	12985.1236	0.3311
404	12904.2052	2.45	3	-7.1	12903.7797	0.4258
414	12910.8099	0.98	2	12.5	12910.3966	0.4131
413	12933.3468	4.72	3	0.1	12932.9160	0.4307
423	12967.1733	3.79	4	9.6	12966.7795	0.3936
423	12970.8092	2.02	2	5.3	12970.4087	0.4004
422 432	13042.0033	2.02	2	-6.0	13041.6631	0.4004
432	13042.0033	2.00	2	-6.0 -6.0	13041.7843	0.3398 0.3447
4 4 0		4.73	2			
	13144.6355			-0.6	13144.3690	0.2666
505	12970.1319	3.22	2	-5.0	12969.7109	0.4209
515	12974.4989	1.44	2	8.7	12974.0855	0.4131
514	13007.9319	1.61	2	-2.5	13007.4912	0.4404
524	13036.8177	3.07	2	8.9	13036.4174	0.4004
523	13044.7720	0.96	3	4.4	13044.3629	0.4092
533	13112.7855	2.71	3	-0.8	13112.4443	0.3408
532	13113.2847	1.13	3	-1.8	13112.9275	0.3574
541	13215.1234	1.21	2	11.8	13214.8410	0.2822
606	13047.7232	4.43	2	50.0	13047.3112	0.4121
616	13050.4133	1.19	2	8.7	13050.0106	0.4023
615	13096.3747	4.34	2	-2.6	13095.9294	0.4453
625	13119.8846	5.99	2	2.1	13119.4764	0.4082
624	13134.4373	1.58	2	-7.1	13134.0159	0.4219
634	13197.7857	3.39	2	-9.7	13197.4366	0.3496
633	13199.2186	0.54	2	-11.6	13198.8497	0.3691
643	13299.8256	1.91	2	-0.4	13299.5239	0.3018
707	13136.8286	1.22	2	-6.9	13136.4148	0.4131
717	13138.4053	2.48	2	1.2	13137.9959	0.4092
716	13198.0171	3.76	2	-8.5	13197.5652	0.4521
726	13216.1103	3.49	2	-5.2	13215.6969	0.4131
725	13239.5663	_	1	1.6	13239.1408	0.4258
735	13296.8768	5.1	2	1.5	13296.5349	0.3319
808	13237.4361	1.53	2	-7.7	13237.0428	0.3936
818	13238.3235	1.86	2	-1.2	13237.9319	0.3916
817	13312.1130	4.45	2	1.8	13311.6632	0.498
827	13325.2269	6.55	2	-21.0	13324.8104	0.4160
826	13359.7672	-	1	-13.6	13359.3265	0.4414
909	13349.5818	3.46	2	-9.8	13349.1925	0.3896
919	13350.0545	2.63	2	5.8 7.5	13349.6646	0.3896
928	13446.9196	2.03 3.66	$\frac{2}{2}$	-9.1	13446.5110	0.3890
920	10440.9190	0.00	2	-9.1	10440.0110	0.4000

TABLE II. Energy levels of vibrational state (500) of $HD^{16}O$.

TABLE III. Band center, rotational and centrifugal distortion constants of vibrational state (500) of HD¹⁶O molecule (in cm^{-1}).

Parameter	Value	Parameter	Value
Ε	12767.1201(60)	$\Delta_{ik} 10^3$	2.299(30)
A	22.0137(17)	$\Delta_i 10^4$	3.275(28)
В	8.18388(57)	$\delta_k 10^3$	2.465(43)
C	5.90020(46)	$\delta_i 10^4$	1.018(28)
$\Delta_k 10^2$	1.1502(94)	$\dot{H_{k}}10^{4}$	1.88

The band center was derived through two transitions to (000) level and found to be $v_0 = 12767.1259 \pm 0.0060 \text{ cm}^{-1}.$

Recently the high-accuracy calculations of the energy structure and transitions probabilities of water isotopic species by Partridge and Schwenke have been published.⁷ It is interesting to compare the rovibrational energy levels of the (500) state obtained in this work with that predicted in Ref. 7. The calculations in Ref. 7 were made by the variational method using ab initio calculated potential energy function, which was later on corrected over the data from HITRAN-92 spectral database. In Ref. 7, it is stated that the difference between the calculated line positions and that presented in the HITRAN database comprised, on 0.021 cm^{-1} . Differences average, between rovibrational energy levels calculated in Ref. 7 and that derived from the spectrum in this work are presented in the last column of Table II. For a number of levels this difference amounts up to $0.4\ \text{cm}^{-1}$ (with the calculated values from Ref. 7 being larger than the experimental levels) decreasing up to 0.2 cm^{-1} (at $K_a = 4$) as the K_a quantum number increases. It may be suggested that the error

in the vibrational energy (J = 0) calculation gives the main contribution into errors of the data from Ref. 7 for (500) state of HD¹⁶O, therefore introduction of the corresponding correction to the rotational energy sublevels (J > 0) provides quite satisfactory agreement with the experimental data. The experimental energy levels presented in this paper can be used for correction of the potential energy function published in Ref. 7.

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for "asic Researches (Grants No. 96-03-3380 and No. 96-03-10043).

The authors are thankful to Dr. O.V. Naumenko and Dr. A.D. "ykov for their assistance in the calculations and useful discussions of the results. The expert system developed by A.P. Shcherbakov has been used for line identification.

REFERENCES

1. A.D. "ykov et al., J. Mol. Spectrosc. **153**, 197–207 (1992).

2. J.R. Fair, O. Votava, and D.J. Nesbit, J. Chem. Phys. **108**, 72–80 (1998).

3. V.E. Zuev, Yu.S. Makushkin, and Yu.N. Ponomarev, *Current Problems of Atmospheric Optics. Atmospheric Spectroscopy* (Gidrometeoizdat, Leningrad, 1987), Vol. 3, 247 pp.

4. V.V. Lazarev et al., Proc. SPIE **3090**, 245–248 (1996).

5. A.P. Shcherbakov, Atmos. Oceanic Opt. **10**, No. 8, 591–597 (1997).

6. J.-M. Flaud et al., J. Mol. Spectrosc. **185**, 211–221 (1998).

7. H. Partridge and D.W. Schwenke, J. Chem. Phys. 106, 4618-4639 (1997).