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The symmetry properties of the parameters of the effective dipole moment 
expressed as a series of vibrational and rotational ladder operators have been 
investigated for the case of symmetric-top molecules. It is shown that the 
expression for the Herman-Wallis factor obtained by Watson [J. Mol. Spectrosc. 
153, 211 (1992)] for fundamental bands of symmetric top molecules could be used 
for overtone, combination, and difference bands in the case of no accidental 
resonance and if the �-type interaction is negligibly small. 

 
INTRODUCTION 

 
The expression for the line strengths for both 

parallel and perpendicular bands in the absence of 
accidental resonance and if the �-type interaction is 
negligibly small can be written as 

 

W J K L J K F J KJ K J K J
K
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Δ( , ) ( , ) ( , )=  , (1) 

 
where L J KJ KΔ Δ ( , )  is the line strength in the rigid top 

approximation, the so-called Henl-London factor; 

whereas F J KJ
K

Δ
Δ ( , )  is the correcting Herman-Wallis 

factor accounting for rovibrational interaction. Watson 
has shown that the factor written in the form 
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where CJ, CK, CJJ(Q), CJJ(PR), CKK and CJK are the 
coefficients dependent on the force field and the dipole 
moment function, is applicable for linear molecules,1,2 
as well as for fundamental bands of symmetric-top 
molecules.3 

The purpose of the present work is to show that 
the Herman-Wallis factor for overtone, combination, 
and difference bands of symmetric-top molecules can be 
written in a similar manner in the case when there is no 
accidental resonance and the �-type interaction is 
negligibly small. With this aim in mind, the series of 
the effective dipole moment operator is written in the 
most general form in terms of elementary vibrational 

and rotational ladder operators, and the symmetry 
properties of the series coefficients are investigated. 

 
EFFECTIVE DIPOLE MOMENT OPERATOR 

 
The line strength corresponding to the transition 

between the lower n and upper m states is determined 
as a square matrix element of the dipole moment 
operator MZ in the space-fixed coordinate system 

 

 W mM M nMm n Z

MM

←
= < >∑3

2
'

'

.  (3) 

 

Here the summation is over the magnetic quantum 
numbers of the lower M and upper M′ rovibrational 
states, whereas n and m symbolize other quantum 
numbers. In practice, the method of effective operators4 
is most frequently used for calculation of the matrix 
elements. In the context of this method, the line 
strength can be calculated using the following 
expression: 
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where Ψ
nM

ef  are the eigenfunctions of the effective 

Hamiltonian Hef: 
 

H E
nM n nM

ef ef ef
Ψ Ψ= . (5) 

 

The effective Hamiltonian is derived from the 
rovibrational Hamiltonian HVR, for example, by the 
method of contact transformations4,5: 

 

H H
iS

VR
iSef ct ct

=

−

e e , (6) 

 
and, as a consequence, the effective dipole moment 
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operator can be derived from the molecular dipole 
moment operator MZ by the same contact 
transformations: 
 

M M
Z

iS
Z

iSef
e ct ct=

−

e .  (7) 

 
The effective dipole moment operator is the function of 
vibrational and rotational operators. 

Prior to presenting the effective dipole moment 
operator in the general case, let us choose the molecule-
fixed coordinate system and introduce the elementary 
vibrational and rotational operators. Let us first 
consider molecules of the CNV (N ≥ 3) and DNd 
(N ≥ 2) symmetry and then generalize the results to 
other symmetry groups of the symmetric-top molecules. 
The above-listed symmetry groups have two generating 

elements each: rotation CN
1  by the angle 2π/N about 

the N-fold axis (rotation-reflection by the angle π/N 
about the rotation-reflection 2N-fold axis) and 
reflection in the symmetry plane σxz. Let us choose the 
molecule-fixed coordinate system in such a way that the 
z-axis coincides with the principal symmetry axis of the 
molecule, and the symmetry plane σxz lies in the 
coordinate plane xz. Let the bases of the irreducible 

two-dimensional representations Eq ( [ ][ ]q N= 1 2, , /…  

for the CNV groups and q = 1, ... N $ 1 for the DNd 
groups) be chosen in such a manner that the matrices 
corresponding to the generating elements have the form 
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for the CNV symmetry groups, and 
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for the DNd symmetry groups. The normal coordinates 
Qt aq

 and Qt bq
 of the degenerate vibration tq of the Eq 

symmetry are oriented along the x and y axes, 
respectively. Note that both the C3V and D2d symmetry 
groups have one two-dimensional representation 

E E≡ 1 . The above-used designation [ ][ ]N /2  is for 

the integer part of N/2. 

The ladder vibrational operators tq Aτ
±  for the 

degenerate vibration tq of the Eq symmetry are defined 
by the expressions: 
 

t
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where a
tqα

+  and a
tqα

 (α = a, b) are the operators of 

creation and annihilation of vibrational quanta with a 
frequency ωtq

.  With the appropriate phase choice of 

the wave functions (see Ref. 6) an action of the ladder 
operators on the wave functions of the two-dimensional 
harmonic oscillator is described by the following 
relations: 
 

A V V V
±

+
> = ± + + ± >   � ∓ � �2 1 1 , (12) 

 

A V V V±
−

> = ± − ± >   � ∓ � �1 1 . (13) 

 

The subscript tq is omitted here for the sake of 
simplicity.  

The ladder operators of the angular momentum 
components are introduced as 

 

J J iJx y± = ∓ . (14) 

 

With the Shortli-Condon phase choice, action of 
these ladder operators on the eigenfunctions | JK > of 
the rigid symmetric top is defined as follows: 

 

( )( )J JK J K J K JK± > = ± + ± >∓ 1 1 ; (15) 

 

J JK K JK
z

> = > . (16) 

 

Let us turn to the ladder operators 
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Z
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of the direction cosines λ
α

z
 connecting the molecule-

fixed coordinate system with the space-fixed one. Note 
that the matrix elements of the direction cosines  
λ+, λ$, and λ0 in the basis of eigenfunctions of the rigid 
symmetric top are nonzero only for ΔK = 1, $1, and 0, 
respectively. 

In the case of symmetric-top molecules, using the 
above-introduced elementary vibrational and rotational 
operators, the effective dipole moment operator in the 
explicitly Hermitian form and in the most general case 
can be presented as 

 

MZ
ef

= ∑
over

all indices

 
{ } { }

{M
mnk de gfh

tq s

τ

… � … … 

×  



E.L. Lobodenko and V.I. Perevalov Vol. 11,  No. 9 /September  1998/ Atmos. Oceanic Opt.  
 

 

815

{ } { }

× ×

× + ×

+

+

−

+

−

−

+

−

+

∏

∏

( ) ( ) ( ) ( )

( ) ( ) ( )*

t m t n t k t

t

s
d

s
e

s

gfh
mnk de gfh

q q q q

q

tq s

A A A A

a a M

�

… � … …

 
 

Φτ τ

 

× ×
+

+

−

+

−

−

+

−∏( ) ( ) ( ) ( )
t k t t m t n

t

q q q q

q

A A A A
�  

×
+ +∏( ) ( ) ( ) ,}a as

e
s

d gfh

s

Φ
τ

 (18) 

 

where τ = 1, $1, 0; 
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The subscripts tq and s are used in Eq. (18) for 

numbering the degenerate and non-degenerate 

vibrations, respectively. The signs (...)* and (...)+ are 
used for complex and Hermitian conjugation. 

 
SYMMETRY PROPERTIES OF THE PARAMETERS 

 
The dipole moment operator and, consequently, 

the effective dipole moment operator are the real ones. 
Hence, the effective dipole moment operator must be 
invariant with respect to time reversal operation, which 
consists of sign alteration of time and the complex 
conjugation of its coefficients. This requirement 
imposes the condition upon the parameters of the 
effective dipole moment 
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which can be derived with the use of the 
transformation properties of the elementary 
vibrational and rotational operators presented in the 
Table I. 

 
TABLE I. Transformation properties of the elementary operators. 

 

Operator Hermitian  
conjugation 

Time  
reversal 

q1

N rotation 
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If the molecular symmetry group has the 

generating element σxz, then this results in the 
additional condition on the effective dipole moment 
parameters. According to the Hougen (Ref. 7) and 
Longuet-Higgins (Ref. 8) scheme, reflection in the σxz 
plane is equivalent a certain permutation of the 
identical nuclei followed by the space inversion at the 
origin of the coordinates (P*). Hence it follows that 
the effective dipole moment operator must change the 
sign under the action of this operation: 

σxz Z Z
M M

ef ef
= − .  (21) 

 

Let us first assume that all one-dimensional normal 
vibrations in a molecule are fully symmetric with 
respect to the reflection in a plane. Then, taking into 
account the transformation properties of the elementary 
vibrational and rotational operators presented in the 
Table I, the requirement (21) leads to the following 
condition for the parameters of the effective dipole 
moment operator: 
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Comparing the expressions (20) and (22), we can 

find 
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that means that the parameters are real. It can be 
shown that if a molecule has the one-dimensional 
normal vibrations antisymmetric with respect to σ

xz
, 

then the parameters of the effective dipole moment 
operator are real for the terms with the even total 
power of the elementary vibrational operators 
antisymmetric with respect to σ

xz
 and these parameters 

are imaginary otherwise. 
Let us investigate the behavior of the effective 

dipole moment operator with respect to the CN
1  

rotation. In the Hougen7 and Longuet$Higgins8 
scheme, this transformation is equivalent to the pure 
permutation of the identical nuclei (P). The effective 
dipole moment operator must be invariant with respect 
to the permutation of the identical nuclei, hence 

 

C M M
N Z Z

1 ef ef
= . (24) 

 

Let consider an arbitrary term in Eq. (18) and 
suppose for simplicity that the subscript s is only for 
vibrations, which are antisymmetric with respect to the 

CN
1  operation, i.e. for the B-type vibrations. Then, 

according to the transformation properties of the 
elementary vibrational and rotational operators (see the 

Table), under the action of the CN
1  rotation, this term 

is multiplied by the factor 
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where 
 

r f= +1  at τ = 1  , 

r f= −1  at τ = −1  ,  (26) 

r f=  at τ = 0 . 

 
In order to fulfil the relation (24), the expression 

in parenthesis in Eq. (25) must be a multiple of 2πi. 
This requirement leads to the condition 
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p = ± ±0 1 2, , ,  …  (27) 
 

whence, with regard for Eqs. (12), (13), (15), and 
(16) and the comments following Eq. (17), we obtain 
the selection rules for the matrix elements of the 
effective dipole moment operator 
 

q K N p Vt
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 Δ Δ Δ� −∑ = − ∑
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p = ± ±0 1 2, , ,  … , (28) 

 
where V

s
 are the quantum numbers of the 

nondegenerate B-type vibrations. 

If a symmetry group has the S
N2

1  rotation-

reflection as the generating element instead of the C
N

1  

rotation, then Eqs. (27) and (28) are somewhat 
modified. Indeed, in the Hougen7 and Longuet$

Higgins8 scheme, the rotation-reflection S
N2

1  

corresponds to some permutation with inversion P*. 
Hence, the effective dipole moment operator must be 
antisymmetric with respect to the rotation-reflection 

 

S M M
N Z Z2

1 ef ef
= − . (29) 

 
Performing the considerations analogous to the 

previous ones, i.e. accounting for Eq. (29) and the 
transformation properties of the elementary vibrational 

and rotational operators with respect to the S
N2

1  

operation (see the Table), we obtain the following 
condition on the powers of the operators belonging to 
an arbitrary term in Eq. (18): 
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 (30) 
 

where p = 0, ±1, ±2, ... is an arbitrary integer number; 
r is given by Eq. (26); and the subscript s is used only 

for vibrations antisymmetric with respect to S
N2

1 , i.e. 

for the B-type vibrations. The following selection rules 
for the matrix elements of the effective dipole moment 
operator result from Eq. (30) for the symmetry groups 

having the rotation-reflection operation S
N2

1  as the 

generating element: 
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where p = 0, ±1, ±2, ... , Vs  are the quantum numbers 
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of nondegenerate B-type vibrations. Note that the 
selection rules (28) and (31) were discussed in Ref. 9 
by Papouŝek, however, our expression (31) differs from 
the analogous one presented in Ref. 9. The selection 
rules analogous to those presented by Eqs. (28) and 
(31), but for the matrix elements of the effective 
Hamiltonian, are derived in Ref. 10. 

The results presented in this Section for the 
symmetry groups CNV and DNd can be easily 
generalized to the CN and S2N symmetry groups, 
respectively. Since the latter ones have only one 

generating element C
N

1  (or S
N2

1 ),  the parameters of 

the effective dipole moment given by Eq. (18), are 
complex values, and  Eqs. (27) and (28) (or Eqs. (30) 
and (31) for the S2N group) remain valid. 

All the results obtained for the CNV and CN 
symmetry groups automatically could be applied to the 
DNh and CNh symmetry groups, respectively. For the 
latter ones it is necessary only to take into account the 
additional selection rules connected with the additional 
generating element σh (reflection in the plane 
perpendicular to the principal axis) or I (inversion). 
Let assume that the symmetry group under 
consideration has an inversion. Then, taking into 
account the fact that the effective dipole moment 
operator changes the sign under the action of this 
operation, whereas all rotational operators are invariant 
with respect to it, we arrive to the condition: the total 
power of the vibrational operators of the &u[ symmetry 
in Eq. (18) must be odd. Since the effective dipole 
moment operator likewise changes the sign under the 
action of the σh operation, and the rotational operators 
transform as 

 
σh z zJ J= , σ

τ τhJ J= − , ( τ = + −, ), 

 
σ λ λh z z= , σ λ λ

τ τh = − , ( τ = + −, ), (32) 

 
we obtain the following condition  for the DNh and 
CNh symmetry groups having no inversion: the total 
even power of  the ladder operators J

τ
 and λ

τ
 in Eq. 

(18) must correspond to the total odd power of the  
vibrational operators of the & B [ symmetry, and, quite 
the reverse, the total odd power of the ladder operators 
must correspond to the total even power of the  
vibrational operators of the & B [ symmetry. 

Due to isomorphism of the CNV and DN groups, 
all the results obtained for the CNV group 
automatically could be applied to the DN group 
provided that the molecule-fixed coordinate systems are 
chosen properly. The full correspondence is achieved by 
orientation of the y-axis of the molecule-fixed 
coordinate system along the two-fold U axis of the DN 
group provided that in the case of the CNV group the 
symmetry plane lies in the coordinate  
plane xz. 

 

HERMAN-WALLIS FACTOR 

 

As noted above, the Herman$Wallis factor is 
introduced to account for rovibrational interactions  
in the intensities calculations of the œallowedB 
transitions in the rigid top approximation. In this 

approximation, the rotational part of the M
Z

ef  operator 

consists of the direction cosines only, that results in the 
selection rules ΔK = ±0 1, . Therefore, the terms in 

Eq. (18) contributing into intensities of the above-
mentioned transitions must satisfy the following 
condition: 

 
r = ±0 1, , 

 
where r is introduced by Eq. (26). 
Owing to Eq. (27) (or Eq. (30) for the molecules of 
the S2N and DNd symmetry), these terms for a certain 
ΔK (in other words, for a certain r) and a certain band 
have the same vibrational operator, which is 
independent of the τ subscript of the rotational 

operators M
gfh
τ

. This allows us to introduce the 

Herman$Wallis factor independent of vibrational 
quantum numbers for any œallowedB band. Another 
consequence of the relationship (27) (or Eq. (30)) is 
that a set of rotational operators (19) forming the 
Herman$Wallis factor for an œallowedB parallel 
(ΔK = 0) or perpendicular (ΔK = ±1) band does not 
depend on whether this band is fundamental, overtone, 
or difference. Therefore, the expression for the 
Herman$Wallis factor obtained in Ref. 3 for 
fundamental bands automatically could be applied to 
other bands of the above-listed types. Certainly, each 
band has its own values of the parameters of the 
Herman-Wallis factor. 

 

CONCLUSION 

 

In the present paper, the effective dipole moment 
operator for the symmetric-top molecules derived 
within the framework of the conventional formulation 
of the method of contact transformations is written in 
the general case in terms of the rising and lowering 
ladder vibrational and rotational operators. The 
symmetry properties of its parameters are established. 
The selection rules for the matrix elements of this 
operator in the basis of the eigenfunctions of harmonic 
oscillators and the rigid symmetric top rotor are 
presented. These results are sufficient to allow the 
conclusion that the Herman-Wallis factor in the form 
obtained by Watson in Ref. 3 for the fundamental 
bands of molecules under consideration is applicable for 
overtone, combination, and difference bands in the case 
when there are no accidental resonances and the �-type 
interactions are negligibly small. 
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