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In this paper we present the expressions that have been derived using the 

Lorentz$Lorenz formula of the dispersion theory and which enable one to calculate 

the real and imaginary parts of the dielectric constant and refractive index of an 

arbitrary gaseous mixture.  The calculations use experimental data on the 

absorption spectra of the mixture. These values may be calculated as functions of 

the incident radiation frequency, including spectral regions involving the 

absorption lines and bands. 

We have shown in our study that the absorption line contour that follows 

from the dispersion theory does not coincide with the Lorentz contour. We propose 

that the line contour considered in this paper be called as the Lorentz$Lorenz 

contour to distinguish it from the Lorentz one. 
 

The dielectric constant and related to it refractive 
index of any medium, including the atmosphere, is not 
a constant value. These quantities are functions of an 
electromagnetic wave frequency, propagated through 
the medium. The change in the refractive index value  
with changing frequency (or wavelength) of the 
radiation  is known as the dispersion phenomenon. 

The dispersion phenomenon has been investigated 
quite thoroughly1 for the  electromagnetic waves from 
the optical range. For this spectral range simple 
formulae were obtained by Cauchy, Sellmeyer, Koch, 
Edlen, Barella-Sirs, and others that allow one to 
calculate the refractive index of a medium as a 
function of the radiation frequency. In other spectral 
regions the frequency dependence of the refractive 
index has been studied experimentally outside the 
absorption bands and mainly for standard gaseous 
mixtures. However, the needs of rapidly developing 
laser optics, including atmospheric optics, being first 
of all motivated by the necessity to  develop new and 
highly sensitive methods of laser monitoring of the 
environment, stimulate obtaining formulae that could 
provide for calculating the dispersion of arbitrary 
gaseous media  and in the spectral regions that may 
involve both isolated absorption lines and groups of 
lines. 

In this paper we present the expressions that have 
been derived using the Lorentz-Lorenz formula of the 
dispersion theory1$4 and which enable one to calculate 
the real and imaginary parts of the dielectric constant 
and refractive index of an arbitrary gaseous mixture.  
The calculations use experimental data on the 
absorption spectra of the mixture. These values may be 
calculated as functions of the incident radiation 

frequency, including spectral regions involving the 
absorption lines and bands. 

To describe the dispersion rigorously, it is 
necessary to use quantum theory of the atomic structure 
of the matter.5$10 However, a simplified model of the 
dispersive media can be constructed based on the 
classical theory of electromagnetic waves. Since the 
results of classical and quantum theories practically 
coincide,1 we shall consider the dispersion phenomenon 
following mainly Refs. 1$4. 

The substance of a medium  is considered as a 
combination of interacting particles (atoms and 
molecules), that can be polarized under the action of an 
external electromagnetic field and, hence, gain electric 
and magnetic moments. The dipole electric moment of 
each molecule, induced by the external field, is 
considered to be proportional to the effective electric 
field with the proportionality coefficient αe  called the 
polarizability. If being interested only in the effect, 
averaged over all possible orientations of the molecules, 
one may derive the expression that relates the dielectric 
constant of a medium, ε, with its mean polarizability 
αe 
 

ε $ 1
ε + 2 = 

4π
3  N αE ,  (1) 

 

where N is the number of molecules per unit volume. 
The formula (1) is the so-called Lorentz$Lorenz 
formula and it serves as the bridge connecting the 
phenomenological Maxwell electromagnetic theory with 
the theory of atomic structure of the matter. The 
Lorentz$Lorenz formula is the basic formula of the 
dispersion theory. 
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From Eq.(1) follows an explicit expression for ε: 
 

ε = 
1 + 8π N αE/3
1 $ 4π N αE/3

 , ε $ 1 = 
4π N αE

1 $ 4π N αE/3
 .  (2) 

 
When estimating the dipole moment of a molecule 

induced by an external field, it is necessary to know 
the value of a deviation, r = (x, y, z), of each charged 
particle in the molecule, for example electrons from the 
relevant equilibrium position. The exact determination 
of the effective displacement of electrons and nuclei of 
a molecule under the effect of electric field is too a 
complicated problem of quantum mechanics.5$10 
However, it is possible to consider that, with a good 
approximation (and it is confirmed by the rigorous 
theory), the electrons behave so as, if at their deviation 
from the equilibrium position, they undergo the action 
of a quasi-elastic restoring force Fb = $qr, where q is 
the quasi-elasticity factor of an oscillator. Therefore, if 
� is the electron charge and m is the electron mass, then 
the equation of electron motion can be written in the 
following form1: 
 

m 
d2r
dt2

 + g 
dr
dt

 + qr = eE′ , 

 
where t is time, e ′ is the effective electric field that 
influences the molecule, and g is the damping factor of 
the oscillator. In the general case the equation of 
motion  has a more complicated form. The equation 
may be modified based on the  experimental data 
compiled up to now on the absorption of 
electromagnetic waves in different media. However, 
this equation is quite suitable for our purposes, and, as 
shown below, the results obtained using it are in a good 
agreement with the experiment. 

Considering further the effective field e ′ as a 
harmonic field with the angular (cyclic) frequency ω, 
we obtain the solution r(ω) of the equation of motion. 
This solution describes the dipole moment, er(ω), of 
each electron which it contributes into the medium 
polarization. Assuming, that in each molecule there is 
only one effective electron (oscillator), for the mean 
polarizability αe we obtain the following expression: 
 

αE = αE(ω) = 
e2

m(ω2
0 $ ω2) $ i ω g

 , ω0 = q/m ,  (3) 

 
where ω0 is the resonance frequency of the oscillator in 
the absence of radiation attenuation.  

By substituting Eq. (3) into Eq. (2) and 
introducing the dimensionless parameters, we obtain the 
dependence of the dielectric constant ε = ε(ω) on the 
frequency ω of radiation, propagated through the 
medium 
 

ε(ω) $ 1 = CN E (
ω

ω
*

, 
g

m ω
*

) ;  (4) 

E(x, y) = 
1

1 $ x2 $ iyx
 ;   ω

*
 = ω0 1 $ c0 ; 

 

q N = 
3“0

1 $ “0
 ,   c0 = 

4πe2 N

3mω2
0

 = 
4πe2 NA

3mω2
0W

 ρ
*
 . 

 

We use here the equality N = N` ρ
*
/W, where 

N` = 6.02 ⋅ 1023 is the Avohadro number and equals 
to the number of molecules in one mole, W is the 
molecular weight of the medium substance, and ρ

*
 is 

the substance density. The value ω
*
 in Eq. (4) has 

the meaning of a shifted resonance frequency that 
corresponds to the resonance frequency for the 
dielectric constant, as is seen from Eqs. (2) and (3). 
Because we have that  e (0, y) = 1, in Eq.(4), the 
constant q N  determines the static value of the 
dielectric constant (at zero frequency): 
ε(0) = q N + 1. Let us note, that normally for gases 
“0 << 1, and therefore, q N << 1.  

If to introduce into consideration the spatial 
frequency of radiation ν (the spectroscopic 
wavenumber), defined by the relation ν = 1/λ, where 
λ is the current wavelength, then the equality 
ω = 2π“ν (“ is the speed of light) is fulfilled, and 
Eq. (4) takes the form, which usually used in the 
spectroscopy 
 

ε(ν) $ 1 = CN E(ν/ν
*
, γ) ;  (5) 

 

ν
*
 = ω

*
/(2πc) ;   γ = g/(2πcmν

*
). 

 

By presenting ε as ε = εR + i εI and separating the 
real and imaginary parts of Eq. (5) , we obtain 
 

εR $ 1 = CN ER(ξ, γ), εI = CN EI(ξ, γ) , ξ = ν/ν
*
, (6) 

 

ER(ξ, γ) = 
1 $ ξ2

(1 $ ξ2)2 + γ2ξ2 , 

 

EI(ξ, γ) = 
γξ

(1 $ ξ2)2 + γ2ξ2 . 

 

As seen from Eq. (6), functions e R(ξ, γ) and 
e I(ξ, γ) describe the frequency dependence of real 
and imaginary parts of the dielectric constant of the 
medium. As shown below, the function e R(ξ, γ) 
describes the frequency dependence of the real part of 
the refractive index, that determines the refractive 
properties of the medium, and e I(ξ, γ) describes the  
frequency dependence of the imaginary part that 
characterizes the absorption properties of the medium. 
Because of the importance of these functions, let us 
analyze their behavior depending on the values of the 
parameters ξ and γ.  

Analysis of the function e R(ξ, γ) shows, that for 
the argument ξ from the interval 0 ≤ ξ < ∞ it has two 
extrema: the maximum at the point ξ = ξmax and the 
minimum at the point ξ = ξmin, where 
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ξmax = 1 $ γ   at   γ ≤ 1 ,   ξmin = 1 + γ . 
 
At the extremum points the function e R has the values 
 
ER(ξmax, γ)= 1/[γ(2 $ γ)] ,   γ ≤ 1 ,  (7) 
 
ER(ξmin, γ)= $ 1/[γ(2 + γ)] . 
 
In the intervals between the extremum points the 
function e R may be presented by the following 
asymptotic expressions: 
 

e R(ξ, γ) = 

⎩⎪
⎨
⎪⎧
1 + ξ2 (1 $ γ2) , 0 ≤ ξ << a1,

2γ$2(1 $ ξ) [1 + 2(1 $ ξ)] , a1 << ξ << a2,

$ξ$2 [1 + ξ$2 (1 $ γ2)] , a2 << ξ < ∞;
 (8) 
 

a1 = 1 $ γ θ(1 $ γ), a2 = max [1, | γ2 $ 2 |+1/2], 
 
θ(x) = 1  at x ≥ 0 ,    θ(x) = 0  at  x < 0 . 
 

From these expressions it follows, that in the 
range of small values of the parameter ξ (ξ << 1), the 
function e R(ξ, γ), that describes the frequency 
dependence of the real refractive index of the medium, 
increases with the increasing ξ (with the increase of the 
frequency ν), starting from its value at zero frequency 
e R(0, γ) = 1. At large ξ values (ξ ≥ ξmin) the function 
e R(ξ, γ) also increases with increasing ξ and 
e R(ξ, γ) → 0 at ξ → ∞, remaining negative in the 
given interval. It is said that in these cases we deal 
with the normal dispersion. 

In the vicinity of the point ξ = 1, that corresponds 
to the shifted resonance frequency ν = ν

*
, the function 

e R decreases from e R(ξmax, γ) down to e R(ξmin, γ) 
with increasing ξ, passes through zero value at the 
point ξ = 1 (where e R(1, γ) = 0). In this case it is said 
we deal with the anomalous dispersion. In the region of 
the anomalous dispersion the rate of the function e R 
decrease depends on the value of the parameter γ. At 
small γ values (γ << 1) the rate of the function e R 
decrease is maximum and decreases with increasing  γ 
parameter. At γ → ∞ the absolute values of e R(ξmax, γ) 
and e R(ξmin, γ) decrease and the maximum value of e R 
degenerates.  

The function e I(ξ, γ) has one maximum at the 
point ξ = ξ“ 
 

ξc = $(γ2 $ 2)/6 + {[(γ2 $ 2)/6]2 + 1/3}1/2 , 
 
which takes the value 
 

EI(ξc, γ) = γ/[2ξc (γ2 $ 2 + 2ξ2
c)] .  (9) 

 
Thus, for small γ values, (γ << 1), that normally occur 
in practice, we have 
 
ξc = 1 $ γ2/8 ,   EI(ξc, γ) = 1/γ . 

The passage to the regions of small and large ξ 
values leads to a decrease in the function e I down to 
zero: e I(ξ, γ) → 0, at ξ → 0, and at ξ → ∞. To the left 
and to the right of the point of maximum, and also in 
its vicinity, e  may be presented by the following 
asymptotic expressions: 
 
e I(ξ, γ) = 
 

=

⎩⎪
⎨
⎪⎧
γξ[1 + ξ2(2 $ γ2)], 0 ≤ ξ << b1,

EI(ξc, γ)[1 $ (ξ $ ξc)2/(2γ2c)], |ξ $ ξc| << γc 2,

γξ$3[1 + ξ$2 (2 $ γ2)], b2 << ξ < ∞ ;
 (10) 
 
γ2c = ξ2

c(γ
2 $ 2 + 2ξ2

c) /(γ2 $ 2 + 6ξ2
c) , 

 
b1 = min [1, |γ2 $ 2|$1/2] , 
 
b2 = max [1, |γ2 $ 2|+1/2] . 
 

The form of function e I(ξ, γ), that describes the 
frequency behavior of the absorption properties of the 
medium, shows, that in the vicinity of the shifted 
resonance frequency ν ∼ ν

*
 (ξ ∼ ξ“) the absorption 

reaches its maximum (maximum of the absorption at 
ξ = ξ“) and decreases as ν deviates  from ν

*
. In this 

case it is said that there is an absorption line with the  
center at the frequency ν“ = ν

*
 ξ“. As  was shown 

above, for small γ values (γ << 1), that only are of 
practical interest, the value ξ“ may be assumed to be  
equal to unity, that corresponds to the frequency of the 
absorption line center, ν“ = ν

*
. 

As follows from Eq. (10) the parameter γ“ 
characterizes the halfwidth, over the variable ξ, of the 
function e I(ξ, γ) at the half maximum level, 
e I(ξ“, γ)/2, and is called the halfwidth of an 
absorption line. One can see from Eq. (10) that at 
small γ values (γ << 1), 2γ“ = γ/21/2. Besides, if one 
considers the central asymptotics (10) being acceptable 
up to the boundaries of its applicability shown in 
Eq. (10), then e I(ξ“ + γ/2, γ) = 0. Therefore, the 
parameter γ in the function e I(ξ, γ) has the meaning of  
the absorption line width. Let us note, that both γ“, 
and γ characterize the size of the function e I(ξ, γ) at 
the variation of the normalized variable ξ = ν/ν

*
. 

Therefore, for non-normalized variable ν (in the 
frequency domain) the halfwidth and the width of an 
absorption line are represented as γ“ ν*

 and γ ν
*
, 

respectively. 
The amplitude of the line is usually termed as its 

intensity and is designated as S. As seen from Eqs. (6), 
(9) and (10), S = q N e I(ξ“, γ) and, therefore, for small 
γ values (γ << 1) the intensity of an absorption line is 
proportional to q N, while being inversely proportional 
to its width, γ (S = q N/γ). 

In optics the refractive index n is often used 
instead of the dielectric constant ε. For nonmagnetic 
substances, ε and n are connected by the Maxwell 
relation n2 = ε. Since ε is a complex value 
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(ε = εR + iεI), then the refractive index n  is also a 
complex value. Designating the real part n as nR, the 
imaginary part as nI (n = nR + i nI), we obtain, from 
the Maxwell relation, that 
 

n2
R = (εR + ε2

R + ε2I)/2 ,  n2
I = ε2I/(4 n2

R) ,  (11) 
 
where εR and εI are defined by the equalities (6). If the 
medium is a gas and, therefore, in Eq. (6) q N << 1, 
then for q N values that satisfy the inequality 
q N e I(ξ“, γ) << 1,  expressions (11) can be reduced to a 
simpler form  
 

nR = εR ,   nI = εI/2 .  (12) 
 

The functions (nR $ 1)/q N and nI/q N, obtained 
numerically by formulae (11) for the values γ = 0.1 and 
q N from the domain q N e I(ξ“, γ) << 1, are shown in 
Fig. 1. As the quantities εR and εI entering Eq. (12) 
are represented by the equalities (6), then at  
q N e I(ξ“, γ) << 1 we have, from Eq. (12), that  
 

nR = 1 + CN ER ≈ 1 + CN ER/2 , 
 
nI = CN EI/2 , 
 
(nR $ 1)/CN = ER/2 ,   nI/CN = EI/2 
 

and, therefore, the plots depicted in Fig. 1 are the 
graphical representations of functions e R/2 and e I/2, 
simultaneously. 
 

 
 

FIG. 1. Dependence of the complex refractive index 
n = nR + i nI  on the radiation frequency ν; ν

*
 is the 

resonance frequency, and CN = n2
R(0) $ 1. 

 
The above formulae describe the situation, where 

the medium consists of molecules, each having only 
one resonance frequency. In the general case there are 
many such frequencies even in the case of a system of 
molecules of same kind. Then one is forced to replace 
expressions for both the mean polarizability αe, 

(formula (3)), and ε(ω) (in Eq. (4)) by the more 
general expressions.1 For the system of molecules of 
same kind we obtain the following relationship instead 
of Eq. (3) 
 

αE(ω) = ∑
k

  
e2
k fk

mk (ω
2
k $ ω2) $ iωgk

, ωk = qk/mk ,  (13) 

 

where the index k denotes physical parameters of the 
kth virtual oscillator. The value Nfk  (N is the number 
of molecules per unit volume) equals to the number of 
oscillators for the relevant resonance frequency ωk. 

The equation (1) remains yet applicable, but now 
the electrons, groups of electrons, the nuclei of atoms, 
and so on, are to be considered as oscillators. The 
number of these oscillators is very large. However, in 
the majority of cases only a finite number of values fk, 
noticeable magnitudes,1 whereas other values may be 
neglected. The entire formal theory is almost 
unchanged when introducing the quantum-mechanics 
rules, but it already allows one to calculate the values 
fk  for a particular electron system. 

For the system of molecules of different kinds the 
summation in Eq. (13) should be extended to the 
resonance frequencies of all molecules, including the 
frequencies, activized at the presence of other 
molecules. In this case Eq. (1) is used in the following 
form: 
 

ε $ 1
ε + 2 = 

4π
3  ∑

j

 Nj αEj(ω) ,  (14) 

 

where the summation is being done over all kinds of 
molecules, αej(ω) is the polarizability of molecules of 
the jth kind, given by the expression (13), in which the 
set of parameters, that depend on the summation index 
k, changes at changing the kind of molecules (change 
of the number j), Nj is the number of molecules of the 
jth kind per unit volume.  

Let the medium, in Eq. (14), be first composed of 
the molecules of two kinds: 
 

ε $ 1
ε + 2 = 

4π
3  N1 αE1(ω) + 

4π
3  N2 αE2(ω) . (15) 

 

Let us designate the dielectric constants of the media as 
ε1 and ε2 for the molecules of the kind 1 and 2, 
respectively. The equations analogous to Eq. (1) are 
valid for ε1 and ε2  
 

ε1 $ 1
ε1 + 2 = 

4π
3  N1 αE1(ω) , 

 
ε2 $ 1
ε2 + 2 = 

4π
3  N2 αE2(ω) ,  (16) 

 
the solutions to which are the relevant Lorentz-Lorenz 
formulae. 
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ε1 $ 1 = 
4 π N1 αE1

1 $ 4 π N1 αE1/3
 , 

 

ε2 $ 1 = 
4 π N2 αE2

1 $ 4 π N2 αE2/3
 . 

 
The equation (15), whose right-hand side is the 

sum of two terms, has an exact solution, expressed 
through the dielectric constants ε1 and ε2. This solution 
can be presented as follows: 
 

ε $ 1 = 
(ε1 $ 1) + (ε2 $ 1) + (2/3) (ε1 $ 1) (ε2 $ 1)

1 $ (1/9) (ε1 $ 1) (ε2 $ 1) .

 (17) 
 

In the case of gases  we have that |ε1 $ 1| << 1, 
|ε2 $ 1| << 1 and, therefore, it is possible to neglect the 
terms of the second order of smallness in Eq. (17). In 
this case we obtain from Eq. (17) that 
 

ε $ 1 = ∑
j = 1

2

 (εj $ 1) .  (18) 

 
For three components in the right-hand side of  

equation (14) it is possible to take the dielectric 
constant of the mixed medium (Eq. (18)) of molecules 
of the kinds 2 and 3 to be ε2. As a result the term  
ε2 $ 1 in Eq. (18), will itself be presented as a sum of 
two terms after performing the operations analogous to 
those according to the procedure (15)$(18) 
 

(ε2 $ 1) → ∑
j = 2

3

 (εj $ 1) , 

 

where the values ε2 and ε3, in the right-hand side of 
this expression, denote the dielectric constants of the 
media, involving separately the molecules  of the kinds 
2 and 3. Continuing this procedure, the summation in 
Eq. (18) can be used for all kinds of molecules in the 
system considered, and to all resonance frequencies, 
characteristic of each kind. Then 
 

ε $ 1 = ∑
j

 ∑
k

 (εjk $ 1) ,  (19) 

 
where εjk is the dielectric constant of the medium 
involving only the molecules of the jth kind, for which 
we take into consideration only one resonance frequency 
with the number k. The value εjk is set by the formulae 
(4) and (5), in which it is necessary to denote the 
physical parameters of an oscillator �, m, g, q, and the 
related to those parameters ω0, ω*

, ν
*
, γ, qN,  by the 

indices jk and by the index j the parameters of the 
medium N, W, ρ

*
. Thus the values “0 and qN in Eq. (4) 

transform according to the rules 
 

c0 → c0jk = 
4πe2

jk NA fjk

3 mjk ω
2
0jk Wj

 ρ
*j

 , 

 

CN → CNjk = 
3 c0jk

1 $ c0jk
 ≈ 3 c0jk , 

 
where ρ

*j
 is the density of a medium  involving the  

molecules of the jth kind, or the partial concentration 
of jth molecular component of the mixture, fjk is the 
parameter analogous to fk in Eq. (13) and it denotes 
the specific weight of kth resonance frequency in the 
polarizability of the jth medium. 

After performing the above operations, we find for 
the dielectric constant of a multicomponent gaseous 
medium that 
 

ε $ 1 = ∑
j

 ∑
k

 CNjk E(ν/ν
*jk

, γjk),  (20) 

 
where the function e (x, y) is defined by Eq. (4). 

Representing ε again as ε = εR + iεI and separating 
the real and imaginary parts in Eq. (20), we have 
 

εR $ 1 = ∑
j

 ∑
k

 CNjk ER(ν/ν
*jk

, γjk), 

 

εI = ∑
j

 ∑
k

 CNjk EI(ν/ν
*jk

, γjk).  (21) 

 
Here the functions e R(x, y) and e I(x, y) are defined 
by the relations (6). 

Using Eq. (21), it is possible to obtain the 
expressions for real nR and imaginary nI parts of the 
refractive index n (n = nR + i nI) of a multicomponent 
gaseous medium. Using Eqs. (12) and (21), we obtain 
 

nR $ 1 = 
1
2 ∑

j

 ∑
k

 CNjk ER(ν/ν
*jk

, γjk), 

 

nI = 
1
2 ∑

j

 ∑
k

 CNjk EI(ν/ν
*jk

, γjk).  (22) 

 
If the values of the parameters ν

*jk
, γjk, and q Njk 

are known, the relations (22) allow one to calculate the 
real and imaginary parts of the refractive index of the 
medium as functions of the incident radiation frequency 
ν. However, as was already mentioned, even for simple 
molecular systems the evaluation of values of these 
parameters is not so simple being quite a laborious 
problem. In practice it is easier to find the values of 
these parameters from a comparison between theoretical 
and experimental data on nI (or nR) and then to use 
these values in calculation of the values nR (or nI). 
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FIG. 2. Comparison of theoretical and experimental 
data on spectral absorptance of nitrogen dioxide: iA 
is the spectral absorptance, nI is the imaginary part 
of the refractive index, iA = 4πνnI , ν = 1/λ , 
ν0 = 16853.50 cm$1 , the absorptance of NO2, 
recorded at the pressure of 667 Pa, Ref. 10, (solid 
line), and the absorptance, calculated by the 
formulae (22) and (23) using parameters of the 
absorption lines, being a solution to the set of 
equations (24) (dotted line). 

 
Figure 2 shows the results of the comparison 

made between theoretical and experimental data on 
the imaginary part of the refractive index of the 
medium nI. The values of parameters ν

*jk
, γjk, and 

q Njk, that have been sought from the comparison 
with experimental values, are given in Table I. Then 
we have used these values for calculating the 
frequency dependence of the real part of the 
refractive index of the medium nR. The dependence of 
nR on the radiation frequency is shown in Fig. 3. 

For the experimental data we took a portion of 
data from Ref. 10 on the absorption spectrum of 
nitrogen dioxide (NO2) in the wavelength region of 
incident radiation at 0.59 μm. The spectrum of NO2 
has been recorded in the mixture of NO2 and O2 at a 
rather low total pressure of the mixture of 667 Pa. 
The number of NO2 molecules per unit volume was 
N = 1.7 ⋅ 1017

 cm$3. The spectrum has been recorded 
with a laser opto-acoustic spectrometer of an ultra-
high spectral resolution of 0.0007 cm$1. The error in 
the position of the absorption line centers determined 
was below 0.01 cm$1. As compared to the known 
atlas of the NO2 absorption spectrum,11 the spectrum 
from Ref. 10 has been obtained with a higher 
resolution and contains more lines. The width of the 
spectral interval, used in the comparison, is about 
2 cm$1 from 16853.50 and to 16855.45 cm$1 
(593.349$593.280 nm). This interval contains no less 
than 20  absorption lines recorded. 

 
 

TABLE I. Values of the parameters of absorption 
lines, obtained by solving the set of equations (24). 

 

 
 

**

Frequency of the 
line center ν

*
, 

ν
*
 $ ν0,  cm$1 

ν0 = 
= 16853.50 cm$1

Intensity  
of the line S 

for εI 
(S = q N/γ)

, 
S ⋅ 10+7 

Width 
of the 
line γ, 
γ ⋅ 10+6

Parameter 
q N, 

q N ⋅ 10+13

1 0.066 1.386 2.705 3.748 
2 0.160 1.122 3.117 3.499 
3 0.244 0.603 1.181 0.712 
4 0.302 1.424 3.904 5.559 
5 0.349 0.313 0.547 0.171 
6 0.422 0.997 3.067 3.058 
7 0.535 0.898 2.431 2.183 
8 0.602 0.807 3.159 2.549 
9 0.699 0.575 5.208 2.992 
10 0.777 0.407 2.524 1.027 
11 0.890 0.329 4.475 1.474 
12 1.003 0.825 3.248 2.680 
13 1.051 1.324 1.825 2.416 
14 1.155 1.051 5.143 5.408 
15 1.213 0.329 1.041 0.343 
16 1.287 0.763 3.481 2.658 
17 1.358 0.735 2.099 1.543 
18 1.455 0.987 4.030 3.979 
19 1.520 0.695 2.943 2.046 
20 1.592 1.270 2.592 3.292 
21 1.636 0.896 1.991 1.783 
22 1.736 0.542 2.059 1.116 
23 1.801 1.636 3.735 6.112 
24 1.862 0.362 0.976 0.353 
25 1.953 1.852 4.591 8.504 

 

** the number of the absorption line 
 

 
 

FIG. 3. Complex refractive index of nitrogen dioxide 
n = nR + i nI in the spectral region 16853.50 $
 16855.45 cm$1, ν0 = 16853.50 cm$1, calculation by 
formula (22) for the parameters of the absorption lines 
being a solution to the set of equations (24), nR is the 
real and nI the imaginary parts of the refractive index. 
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To make a comparison with the theoretical results, 
the coefficient of spectral absorptance iA(ν), taken 
from Ref. 10, and being the proportionality constant in 
the Bouguer law written in the differential form, has 
been used to calculate the imaginary part of the 
refractive index with the help of the following 
relations: 

 
iA(ν) = k εI(ν) = 2k nI(ν) , 
 
k = 2π/λ = 2πν ,  (23) 
 
where k is the wavenumber of radiation in vacuum. The 
expression (23) is valid for short paths, that are 
commonly in use when measuring the absorption 
spectra under laboratory conditions.  

Since we consider only the absorption spectrum of 
NO2, it is possible to consider the medium as a single-
component one, and to remove the summation over j in 
Eq. (22) and omit index j. The reconstruction of the 
parameters ν

*k
, γk, and q Nk  has been carried out by 

numerically solving the system of nonlinear equations 
 

nI(νm) = 
1
2 ∑

k = 1

M

  CNk EI(νm/ν
*k

, γk) , 

 
1 ≤ m ≤ 3 M ,  (24) 
 
where l  is the number of the absorption lines in the 
spectral region considered. As νm we used the values of 
frequencies that correspond to the extremum points in 
the experimental absorption spectrum (maximum, right 
or left minimum, and an intermediate point between 
them for each line). The values of parameters ν*k, γk, 
and q Nk (1 ≤ k ≤ l ), obtained as a result of solving  
the set of equations (24), are given in Table I. 

The imaginary part of the refractive index nI(ν), 
calculated using the values ν

*k
, γk, and q Nk from 

Table I, is shown in Fig. 2 together with the 
experimental absorption spectrum for nI(ν) 
(reconstructed from the spectrum of the absorptance 
iA(ν) by the relation (23)). To compare the 
experimental absorption spectra nI(ν) and iA(ν), the 
values iA(ν) are given in Fig. 2 at the parallel ordinate 
axis. 

As seen from Fig. 2, there is quite good agreement 
between the theory and experiment. The difference 
between theoretical and experimental data is observed 
only at the spectrum minima and that does not exceed 
16%. From Fig. 3 it follows also, that the frequency 
dependence of the real part of the refractive index nR, 
calculated for parameters from Table I (ν

*k
, γk, and 

q Nk), as well as the dependence of the imaginary part, 
have a fine structure. Thus, the deviation of the value 
nR from unity can be both positive and negative. 

The comparison made here between theoretical and 
experimental data on the imaginary part of the 
refractive index, nI, of a  medium and the calculations,  
 

made on the basis of this comparison, of the frequency 
dependence of the real part of the refractive index nR 
can be carried out for other spectral regions of the 
absorption spectrum, other gases, and multicomponent 
gaseous mixtures as well. 

In the gas spectroscopy when studying spectral 
absorptance the contour of the absorption line is 
normally  that is called the dispersion or the Lorentz 
one. This contour had been derived within the 
framework of classical electromagnetic theory with the 
account for Lorentz-Lorenz formula and was first 
proposed by Lorentz in Ref. 4. The contour describes 
the shape of an absorption line caused by collisions 
among molecules, Refs. 4$10. In modern designations 
the dispersion (Lorentz) contour has the form 
 

iL(ν) = 
 SLi

π
 

 γL

(ν $ ν0)2 + γ2
L

 = 
SL γ

2
L

(ν $ ν0)2 + γ2L
, 

 

SLi = ⌡⌠
0

∞

 iL(ν) dν ,   SL = iL(ν0) = 
 SLi

π γL
 , 

 
where ν0 is the frequency of the absorption line center, 
γL is the halfwidth of the line at the level iL(ν0)/2, 
SLi and SL are the integral intensity and the intensity 
of lines, respectively. 

The absorption line contour considered in this 
paper is written for the spectral absorptance, iLL(ν). 
Taking into account the relations (6) and (23), it can 
be presented in the form 
 
iLL(ν) = k εI(ν) = 2π ν CN EI(ξ, γ) , 
 

iLL(ν) = 
SLL γ

2
LL ν2

(ν2 $ ν2
*
)2 + γ2LL ν2

 , 

 
SLL = iLL(ν

*
) = 2π ν

*
 CN/γ ;   γLL = γ ν

*
 . 

 

The contours iLL(ν) and iL(ν) both have been 
obtained based on Lorentz-Lorenz formula. However, as 
it is easy to see, iLL(ν) does not coincide with iL(ν). 
In contrast to Lorentz contour iL(ν), it would be 
natural to call the contour iLL(ν) as Lorentz-Lorenz, 
and the spectroscopy related to use of the contour 
iLL(ν), as Lorentz-Lorenz spectroscopy. 

It is possible to write the expressions (21) and 
(22) in the form, that contains in an explicit form the 
concentration of all the molecular components of the 
mixture. To do this, let us isolate the dependence on 
the jth component concentration ρ

*j
 from the values 

q Njk  
 

CNjk = cjk ρ*j
 ,   cjk = 

4 π e
2
jk NA fjk

mjk ω
2
0jk Wj

 .  (25) 

 

Substituting Eq. (25) in Eqs. (21) and (22), we have 
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εI = ∑
j

 ρ
*j

 ΦIj(ν) ,   εR $ 1 = ∑
j

 ρ
*j

 ΦRj(ν) ; 

 

nI = ∑
j

 ρ
*j

 ΦIj(ν)/2 , nR $ 1 = ∑
j

 ρ
*j

 ΦRj(ν)/2 ;  (26) 

 

ΦIj(ν) = ∑
k

 cjk EI(ν/ν
*jk

, γjk) ,  

 

ΦRj(ν) = ∑
k

 cjk ER(ν/ν
*jk

, γjk) . 

 

Let us choose the interval of frequencies, that 
contains absorption lines of only a concrete jth gaseous 
component of some mixture. For that interval, where 
no  lines of other components are present, if neglecting 
the influence of far wings of lines of other ranges,8 it is 
possible, in expressions (26), to remove the summation 
over j and omit the index j. For dielectric constant and 
the refractive index we obtain from Eq. (26) 
 

εI = ρ
*
 ΦI(ν) ,   εR $ 1 = ρ

*
 ΦR(ν) ; 

 

nI = ρ
*
 ΦI(ν)/2 ,   nR $ 1 = ρ

*
 ΦR(ν)/2 .  (27) 

 

It is easy to see from this expression that in the 
frequency range chosen both the imaginary part of the 
dielectric constant (the refractive index) and the 
deviation of real part from unity are proportional to the 
partial concentration ρ

*
 of the gaseous component 

considered. 
Thus, if the laboratory recording of absorption 

spectra of that or other gas is accompanied by 
measurements of the density ρ

*
 or related to it number 

of molecules per unit volume N (the number density of 
absorbing molecules), according to Eq. (4), then upon 
completing the procedure analogous to Eq. (24) on 
determination of the parameters ν

*k
, γk, and q Nk, the 

values “k (“k = q Nk/ρ
*
) become known from Eq. (25) 

for each line and, therefore, the functions ΦI(ν) and 
ΦR(ν) are completely determined. 

For known functions ΦI(ν), ΦR(ν) the relations 
(27) enable one to retrieve the concentration of a gaseous 
species in any gas mixture, for example, in the 
atmosphere. To do this, at frequencies from the above 
mentioned interval it is necessary to measure the radiation 
absorption by the mixture characterized by values εI and 
nI or the degree of refraction of radiation by the medium, 
which is described by the values εR and nR. 
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