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In this work it is shown that in regard to optical propagation effects 
associated with intensity variations and with higher order wave front distortion 
any pair of quite distinct cases of optical propagation through Kolmogorov 
turbulence may be related by simple scaling laws providing that two equivalencies 
apply between the cases.  The first of these two equivalencies requires that from the 
source plane to the measurement plane the distribution of the optical strength of 
turbulence should follow the same form in the two cases, i.e., that there should be a 
simple proportionality between the strength of turbulence at the same fraction of 
the total distance in the total distance in the two cases.  The second of the two 
equivalencies requires that a quantity which we will call the Rytov number, and 

shall denote by R = k7/6Z5/6
⌡⌠
0

 Z

 dz(z/Z)5/6(1 $z/Z)5/6C
2

N
(z), should be the same 

for the two cases. (The Rytov number is proportional to the log-amplitude variance 
as calculated by Tatarskii for spherical wave propagation over the path, using 
theory based on the Rytov approximation). 

 

1. INTRODUCTION 
 

Scaling based (or dimensional/dimensionless) 
analysis is a standard technique in physics research.  It 
has played a major role in such fields as fluid 
dynamics, where one has only to mention the term 
œReynolds numberB to recognize the importance of this 
type of analysis to the field.  This type of analysis has 
been used in both theoretical and experimental work 
related to wave propagation through turbulence.  
Scaling laws have been used in experimental studies,1 
as a motivation/basis for heuristic approximations,2 for 
asymptotic analysis,3 and in numerical simulation.4  In 
this work we intend to develop scaling laws for the 
propagation of an optical field through turbulence 
through manipulation of the wave equation $ scaling 
laws applicable when the propagation effects of interest 
concern or are related to intensity fluctuations and/or 
higher order wave front distortion.  These scaling laws 
will be of a form that applies directly to the random 
optical field per se, and not just to various moments of 
that field.  Because extremely low spatial frequency 
components of the turbulence will not be treated 
rigorously the average, i.e., the first moment of the 
phase and of the tilt of the two fields will not be 
related by the scaling laws.  This is discussed in 
Section 2. 

We will establish in a relatively rigorous manner 
that the scaling laws follow directly from the form of the 

wave equation and from the Kolmogorov statistics of 
turbulence, considered in conjunction with some rather 
straight forward physical arguments $particularly 
arguments concerning the extremely low spatial frequency 
components of the turbulence.  We shall show that 
providing that certain conditions are satisfied two 
seemingly quite different optical propagation cases 
(having different wavelengths, different path lengths, and 
different strengths of turbulence) have optical fields 
whose random intensities and higher order wave front 
distortions are related to each other by simple scaling 
laws.  The conditions that have to be satisfied relate to 
the distribution of the strength of turbulence along the 
propagation paths and to a quantity which we call the 
Rytov number, whose value is defined by Eq. (1) given 
in Section 3. 

It should be noted that we are considering 
propagation matters involving only a strictly 
monochromatic wave.  Two cases that might be related 
through the scaling laws that we shall present can 
involve different wavelengths, but each of the two cases 
must be considered to be strictly monochromatic $ since 
the scaling requires a well defined value for the 
wavelength.  This restriction carries with it the 
implication that the scaling laws will not provide a 
handle on time dependent effects such as the stretching of 
a short pulse, since the fact that the pulse is short has 
inherent in it the implication that the optical field is 
polychromatic. 
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Establishment of these scaling laws will makes it 
possible to justify carrying out an optical propagation 
experiment with parameters chosen to facilitate the 
implementation of the experiment and then applying 
the results (in scaled form) to a propagation case of 
interest $ a case for which the characteristic parameters 
(for example the path length) might make the conduct 
of a directly relevant experiment quite 
difficult/expensive.  Of perhaps more direct relevance 
to us as analysts is the fact that the existence of these 
scaling laws means that in considering computer 
simulation Monte Carlo studies of optical propagation 
through atmospheric turbulence, the dimensionality of 
the space to be explored is reduced $ which can reduce 
the effective size of the space to be explored by orders 
of magnitude.  This can turn a problem which 
otherwise might be too large to be systematically 
explored by Monte Carlo simulation methods into one 
that is small enough that such a systematic exploration 
would be possible. 

It should be remarked that our original stimulus 
for the development of the scaling laws derivation that 
is being presented here lies in our observation that 
computer codes for simulation of optical propagation 
through turbulence have built into them what is in 
essence the very scaling laws that we shall be 
developing!  Though the scaling laws per se were not 
intended (or even a consideration) when the codes were 
prepared, an examination of how the phase shifts 
associated with a turbulence phase-screen are 
calculated, and an examination of how the phase shifts 
associated with the path lengths between pairs of points 
on successive screens are calculated in the codes leads 
to these scaling laws.  (Quite frankly it is from a 
recognition of this that we were led to seek a derivation 
of the scaling laws that would be more rigorous than 
the mere noting of the fact that the computer codes 
seem to have these laws inherent in them). 

Interestingly, the fact that the scaling laws  
are inherent in the way the codes conduct propagation 
calculations means that we can not uses the codes  
in a Monte Carlo simulation to test the scaling laws.  A 
well conducted simulation would necessarily lead to 
perfect confirmation.  [Only if we deliberately sought 
unnecessary randomness (for example by deliberately 
not using the same random number seed in generating 
the turbulence phase-screens for the two cases we are 
comparing) would we get less than perfect 
confirmation $ but that lack of perfect confirmation 
would be no more than an observation of the  
inability of the code to produce two exactly equal 
results for two statistically independent simulations of 
exactly the same case.]  Validation of the scaling laws 
has to be  sought in experimental tests, and in 
consideration of the soundness of the derivation we 
shall present. 

The scaling laws will be derived based on the 
assumption that the statistics of turbulence are 
Kolmogorov and that the optical strength of 

turbulence, as measured by the refractive index 

structure constant, q
2
N, is similarly distributed along 

the two propagation paths that are to be related by the 
scaling laws.  By similarly distributed we mean that 

with q
2
N expressed as a function of the fractional 

position (i.e. quarter way, half way, three-quarters of 
the way, etc.) along the propagation path, the 
distributions along the two paths are directly 
proportional to each other.  It will be shown that with 
the turbulence for the two paths having the properties 
just stated, then the requirement for the two cases to 
have propagation statistics that have a simple scaling 
law relationship to each other is that the two cases 
have the same value for what we call the Rytov 
number, R. 

A word is in order here regarding extremely low 
spatial frequency components of the turbulence and 
regarding one of the implications of the restriction of 
our attention to Kolmogorov turbulence.  We explicitly 
do not introduce an outer scale of turbulence to limit 
the range of separations for which the Kolmogorov 
description of turbulence is applicable.  This restriction 
of our attention to pure Kolmogorov turbulence carries 
with it the implication that the refractive index 
variance is infinite.  For applications of principle 
interest to date (such as in the calculation of wave 
front distortion effects for an imaging system study or 
for an adaptive optics system study, or in the 
calculation of laser beam intensity fluctuation effects 
for a study of optical communications through the 
atmosphere) where the effects of interest concern 
intensity perturbations and higher order wave front 
distortion there appears to be no need to introduce an 
outer scale of turbulence.  The extremely low spatial 
frequency components of the turbulence have no optical 
effect of practical interest, so it make no significant 
difference how we treat the matter of the outer scale of 
turbulence, or in fact even if we allow our treatment of 
such components of turbulence to be not entirely self 
consistent; there is no significant optical effect.  Only 
in consideration of first moments of the optical field (a 
subject for which we have been unable to identify any 
basis for a practical interest) would the outer scale of 
turbulence become manifestly significant. 

This matter is discussed in more detail in 
Section 2 where it is explained why our scaling law 
results should not be considered applicable when the 
phenomena of interest is dependent upon the 
variability of the phase at a point, as would be the 
case in calculating the first moment of the optical 
field of the area average phase, or when the 
phenomena of interest is dependent on the variability 
of the area average wave front tilt.  While our results 
will not be applicable when the interest is in 
evaluation of such matters, for other more practically 
oriented interests such as those concerning imaging, 
adaptive optics, optical communications, etc.), which 
are governed by intensity variations and higher order 
wave front distortion effects, the scaling law results 
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should be quite relevant.  The distinction between the 
two classes of subjects $ those for which the scaling 
laws are applicable and those for which it is not $ is 
based on some rather obvious physical consideration 
as to whether turbulence variations whose scale sizes 
are extremely large will affect the propagation 
statistics of interest.  For cases of practical interest 
(or at least for all cases of practical interest that we 
have been able to identify) this is not the case $ such 
large scale refractive index variations will have no 
effect of significance, so the scaling laws should be 
applicable. 

Before dropping the matter of moments of the 
optical field it seems appropriate to take note of the 
fact that some different scaling laws and dimensionless 
parameters have been derived by others by use of 
methods that approximated some of the statistical 
moments of the optical field.  In particular we call 
attention to the work of Gurvich and Kan,5 of 
Whitman and Beran,2 and of Gozani.6 

 
2. TREATMENT OF EXTREMELY LOW SPATIAL 

FREQUENCY COMPONENTS OF TURBULENCE 
 

Low spatial frequencies play a rather unusual role in 
the description and analysis of atmospheric turbulence 
and of the optical effects of turbulence.  In the treatment 
of turbulence in the inertial sub range it is convenient to 
be allowed to ignore the low spatial frequency limit of 
the inertial sub range and consider Kolmogorov statistics, 
i.e., the r2/3 power law dependence of the structure 
function and the i$11/3 power law dependence of the 
(three dimensional) power spectral density, to apply for 
all value of r no matter how large and for all values of i 
no matter how small.  This carries with it inter alia the 
implication that the variance of the atmospheric refractive 
index is infinite.  Tolerance of such a clearly unphysical 
situation $ and this matter is tolerated in many if not 
most studies of optical propagation through atmospheric 
turbulence $ derives from the fact that the optical effects 
produced by the very low spatial frequency components 
of turbulence are either unobservable or so difficult to 
observe that there is essentially no interest in these 
effects.  Also contributing to the fact that this unphysical 
situation is so often tolerated in propagation analysis is 
the fact that physical insight makes it so easy to evaluate 
the optical propagation effects of these extremely low 
spatial frequency components $ so easy to determine 
whether or not the presence or absence of such 
components of turbulence makes any physically 
interesting/engineering-wise significant difference.  For 
most applications it is concluded that the presence or 
absence of the low spatial frequency components makes 
no difference of concern.  We shall utilize this lack of 
physically interesting consequences in optical propagation 
to justify our use of a not entirely self consistent 
approach to the modeling of these extremely low spatial 
frequency components of the turbulence in the analysis 
we shall be presenting. 

It is immediately clear from physical insight that 
extremely low spatial frequency components of 
turbulence do not result in any significant effects 
relative to intensity fluctuations.  As noted above, with 
no outer scale of turbulence the covariance of the 
refractive index is infinite.  This is due to the presence 
of very œstrongB extremely low spatial frequency 
components of turbulence. But because these extremely 
low spatial frequency components of turbulence have 
essential no optical propagation effect in terms of 
intensity perturbations the covariance of intensity 
fluctuations will be finite.  Accordingly, if our interest 
is in intensity fluctuation effects then we are free to 
treat the very low spatial frequency components of 
turbulence in what every way we find most 
convenient $ and not necessarily even in a self 
consistent manner. These components of the turbulence 
have no effect upon the intensity perturbations so how 
we treat these components will not effect the intensity 
variations; the intensity perturbation results remain 
valid no matter how the extremely low spatial 
frequency components of turbulence are treated. 

It is easy to see that the dimension that is to be 
associated with the division between what is and what 
is not to be considered an extremely low spatial 
frequency is set by the Fresnel length, which is of the 
order of the square root of the optical wave length 
times the effective path length $ where the effective 
path length is the distance the light travels after first 
encountering turbulence. 

If our interest is in phase perturbation effects then 
the matter is not quite so simply stated.  In this case 
we need to distinguish between three aspects of phase 
perturbation.  These three aspects are: 

1) variations with time of the phase at some point 
(or of the area average phase $ averaging over some 
region of interest), 

2) variations with time of the wave front tilt 
associated with some region (the region presumably 
corresponding to some optics aperture), and 

3) within some region the point-to-point phase 
difference (at some instant of time) excluding from the 
phase difference the portion due to the average wave 
front tilt associated with the region (at that instant of 
time) $ what is often called higher-order wave front 
distortion. 

It should be fairly obvious from physical insight 
that the very low spatial frequency components of 
turbulence will have no significant effect relative to the 
third of three items $ higher-order wave front 
distortion.  The extremely low spatial frequency 
components of turbulence can be seen to produce only 
correspondingly low spatial frequency components of 
phase variation with essentially no contribution to the 
higher order wave front distortion.  (To the extent that 
there is any significant phase perturbation it is almost 
entirely incorporated in the wave front tilt $ the second 
of the three aspects listed above.)  Accordingly, if our 
interest is in higher order wave front distortion effects, 
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for the study of something like the short exposure 
resolution of an imaging system, like the performance 
of an adaptive optics system for correction of higher 
order wave front distortion, or like the instantaneous 
antenna gain of a laser transmitter, then we are free to 
treat the very low spatial frequency components of 
turbulence in what every way we find most 
convenient $ and not necessarily even in a self 
consistent manner. 

In this case the dividing line between just what is 
not to be considered to be an extremely low spatial 
frequency is set by the size of the region being considered, 
presumably the aperture size (or by the Fresnel length, 
which ever is larger). 

If our interest is related to the wave front tilt 
associated with some aperture, as would be the case if we 
were considering the servo bandwidth of the tip-tilt 
tracker of an adaptive optics system, then we note that 
even with no outer scale of turbulence $ so that there are 
significant contributions to the tilt from some extremely 
low spatial frequency components of turbulence $ the tilt 
variance will be finite.  The value of that variance will, 
however, depend on some extremely low spatial frequency 
components of the turbulence.  In this case the dividing 
line between significant spatial frequencies and those that 
are so low that the tilt statistics are virtually 
uninfluenced by whether or not such low spatial 
frequency components are include, is some very large 
multiple of the aperture diameter.  Let us consider just 
where this dividing line is.  To do this, it is convenient to 
consider the contributions by the different spatial 
frequency components of turbulence to the wave front tilt 
variance. 

The tilt variance’s value is set almost entirely by 
spatial frequency components lower than the inverse of 
the aperture diameter, D.  If we set a dividing line at 
some spatial frequency iLow and say that for spatial 
frequencies smaller than iLow the spatial frequency is so 
extremely low that the spatial frequency component 
makes no significant contribution to the area average tilt 
and so can be ignored in calculating the tilt variance, 
then how much of the true tilt variance have we left out?  
For Kolmogorov turbulence the tilt variance, which is 
proportional to the integral of i2 times the turbulence 
PSD, integrated from some low spatial frequency end, 
iLow to an effective upper limit of 1/D, has a value of 

D$1/3 $ i1/3
Low.  To get a variance equal to 75% (or 90%) 

of the true value, the value we get with no cut off of the 
very low spatial frequency components of turbulence, 
which true value is proportional to D$1/3, we have to set 
the dividing line, iLow, between just what is considered a 
significant contributor to the tilt and what is to be 
considered to be a such an extremely low spatial 
frequency that it makes no significant contribution to the 
tilt $ with significance taken to be defined in terms 
of the 75% (or 90%) of the full amount $ at  
iLow = (1/4)D$1/3 = (64D)$1/3 (or at 
iLow = (1/10)D$1/3

 = (1,000D)$1/3) corresponding 
to a spatial frequency period of 64D (or 1,000D). 

This dividing line will, in general, correspond to 
such a large length that we probably will not be able 
to justify the treatment of the lower spatial 
frequencies of turbulence as being so extremely low 
that they have no significant effect upon optical wave 
front tilt for moderate to large size 
regions/apertures.  Accordingly we conclude that the 
scaling law results we will develop here will be of 
only limited/questionable applicability if the optical 
propagation effect of interest significantly involves 
wave front tilt over moderate or large aperture 
diameters. 

If our interest lies in the variation of the phase at a 
point, as it might be if we were thinking of using a  
Mach Zender type of interferometer with one leg of the 
interferometer passing through an evacuated pipe $ so as 
to monitor ground stability (seismology effects), or if we 
were interested in determining the first moment of an 
optical field then it should be clear that we must properly 
include all spatial frequency components down to the 
lowest physically present.  If the turbulence is 
Kolmogorov then the phase variance is infinite (and the 
first moment of the optical field is equal to zero) and any 
incorrect treatment of the lowest spatial frequencies can 
have a major effect on the quantity of interest.  For such 
a case we must be punctilious in our treatment of the 
lowest spatial frequencies.  Accordingly we must conclude 
that the scaling laws we shall develop here will be 
inapplicable for study of optical effects involving the 
variations of the phase at a point (or involving the 
variations of an area average phase).  Accordingly in this 
work we shall restrict our attention to optical effects for 
which the treatment of the lowest spatial frequency 
components of the turbulence can be adjusted at our 
convenience to facilitate the analysis without there being 
any concern for the effect of such œadjustmentsB upon the 
optical effects of interest.  Basically we are restricting our 
attention to turbulence induced intensity fluctuations and 
to turbulence induced higher order wave front distortion.  
(It should be noted that the matters we have excluded $
 related to wave front tilt, to long term variations of 
phase at a point, and to area average phase, which 
matters are dominated by extremely low spatial frequency 
components of turbulence $ can be treated reasonably 
well with physical insight and with simple ray-optics type 
analysis.)  The optical effects for which the scaling laws 
are applicable, related to intensity variations and to 
higher order wave front distortion, are the effects which 
constitute the real challenge in the development of 
optical propagation theory. 

 
3. BASIC FORMULAS 

 

The Rytov number, R, which will prove to be 
central element in our scaling law results, is defined by 
the equation 

R = k7/6
 Z5/6

 ⌡⌠
0

Z

 dz(z/Z)5/6
 (1 $ z/Z)5/6

 C
2
N(z) . (1) 



986   Atmos. Oceanic Opt.  /November  1998/  Vol. 11,  No. 11 David L. Fried 
 

 

Here Z denotes the total length of the propagation path 
and k = 2π/λ is the optical wave number.  We have 
assigned the quantity R the name œRytov numberB in 
acknowledgment of the fact that R is proportional to 
the log-amplitude variance for infinite plane wave 
propagation as it was calculated by Tatarskii using the 
Rytov approximation. 

For normalization of position in the plane 
transverse to the nominal propagation direction we use 
the length L, which is what we may call the Fresnel-
length for the propagation path.  Its value is given by 
the equation 

L = Z/k . (2) 

The scaling laws we shall derive will relate the 
random optical field, expressed as a function of the 
transverse dimension, r, (i.e. the dimension associated 
with the plane perpendicular to the nominal direction 
of propagation) for one case to the corresponding 
random optical field for the other case $ with the 
relationship established by expressing the random 
optical fields for the two cases as functions of r/L. 

The scaling laws will be developed from the 
paraxial version of the wave equation approximated in 
a phase-screen form, and will rely on replacement of 
results for one ensemble of random source functions by 
results developed for an equivalent ensemble of random 
source functions.  The phase-screen formulation with 
statistically independent phase-screens, which we shall 
be using in deriving the scaling laws, is based on the 
physical argument set forth in the first paragraph of 
this paper concerning the inconsequential nature of the 
effect of extremely low spatial frequency components of 
the turbulence.  Strictly speaking the phase screens 
should be considered to be correlated.  It is to be noted 
that this argument, leading to the introduction of 
statistically independent phase-screens leads with no 
farther insight (other than that double back scattering 
is negligible) to the so called œMarkov approximationB 
for the optical field7,8 $ the approximation œthat the 
field is statistically independent of the medium 
inhomogeneities that the wave has not yet passed 
through.B 

We shall be working with the paraxial wave 
equation, solving for the perturbation induced by 
turbulence on an optical field U(r, z, t), where 
U(r, z, t) represents a nominally plane wave traveling 
in the z-axis direction.  The field is expressible as 

U(r, z, t) = u(r, z) exp[ik(± z + ct)] ,  (3) 

where u(r, z) is a function which (nominally) varies 
slowly, particularly in its z-coordinate dependence.  
The paraxial equation, governing the value of the 
perturbation-carrying function, u(r, z), is 

[∇2
r
 ± 2ikäz + 2k2n(r, z)] u(r, z) = 0 .  (4) 

Here the notation ∂z denotes the partial derivative with 
respect to z (corresponding to ∂/∂z) and the notation 
∇2
r
 denotes the sum of the two second derivative 

components of the Laplacian, the derivatives being 

taken with respect to the two variables perpendicular 
to the z-axis.  The notation n(r, z) denotes the 
turbulence induced perturbation of the atmosphere’s 
refractive index, and is presumably very small. 

The paraxial equation is obtained from Maxwell’s 
wave equation on the basis of the two approximations 
that the refractive index perturbation, n(r, z), is so 
small that its square can be neglected, and that the 
variation of the perturbation-carrying function, u(r, z), 

varies so slowly along the z-axis that we can neglect ∂2
z

u(r, z), the second derivative with respect to z of 
u(r, z).  Equation (4) represents the starting point for 
the analysis to follow. 

 
4. PHASE-SCREEN FORMULATION 

 

Following the arguments and practices used by 
Uscinski,9 Prokhorov et al.,10 Taylor,11 Ishimaru,12 and 
many others, and in accordance with the practice 
generally utilized in wave optics propagation 
simulation, we shall consider the propagation path, 
whose total length we denote by Z, to be divided in to 
P equal length segments with boundaries at 
z = {z0, z1, z2,...,zp,...,zP}, where z0 = 0 and zP = Z $ a 
total of P + 1 values of zp, and will consider each such 
segment’s refractive index pattern, n(r, z), to be 
collapsed into a zero thickness œphase screenB located at 
the mid-point of the segment.  We shall use the 

notation $zp to denote the mid point of the pth segment, 
so that 

$zp = 
1
2 (zp + zp$1) .  (5) 

Our rule for selecting the value of P is that it 
should be as small as possible compatible with the 
requirement that 

(Z/P)λ/r0 <<  r 

seg
0 (p)  (6) 

for all values of p, where r0 denotes the effective 
coherence diameter for infinite plane wave propagation, 
with a value given by the equation 

r0 = 

⎣
⎢
⎡

⎦
⎥
⎤2.91

6.88 k2 ⌡⌠
0

Z

 dz C2
N(z)  

$3/5

,  (7) 

and where r 

seg
0 (p) denotes the effective coherence 

diameter to be associated with infinite plane wave 
propagation through the pth segment of the 
propagation path $ with a value given by the equation 

r
seg
0 (p) = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤2.91

6.88 k2 ⌡⌠
zp$1

zp

 dz C2
N(z)  

$3/5

.  (8) 

The physical reasoning underlying the imposition 
of Eq. (6) to govern the selection of P is as follows.  In 
replacing the refractive index pattern, distributed over 
the finite length of the segment, with a zero thickness 
phase screen surrogate, positioned at the center of the 
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segment, we are assuming that the random wave front 
distortion induced spread in propagation directions $ a 
spread that at worst (at the far end of the path) is of 
the order of λ/r0 $ has no significant impact on the 
additional phase perturbation introduced by 
propagating through the segment.  This will be so if the 
random amount of lateral displacement $ which is at 
worst of the order of (Z/P)λ/r0 $ is small enough.  
The quantity defining just what is a œsmall enoughB 
amount of lateral displacement is given by rseg0 (p).  
Thus if Eq. (6) is satisfied then the effect of the lateral 
spread is œsmall enoughB and we can replace the 
refractive index pattern extended over the segment by 
the phase screen located at the mid-point of the 
segment. 

We also require that P be large enough that 

(Z/P)λ <<  r2
0 ,  (9) 

in order to justify the use of ray optics in considering 
the propagation through the thickness, Z/P, of the 
segment in the way just have.  But since this 
requirement is satisfied, if Eq. (6) is satisfied, we need 
not take Eq. (9) as presenting an additional constraint 
on the allowed value of P. 

We shall also assume that the selected value of P 
is small enough that the segment thickness, Z/P, is 
great enough to justify our treatment of the phase 
screens as being statistically independent.  As discussed 
latter statistical independence will be justified as an 
acceptable approximation if Z/P is significantly larger 
than the period associated with the dividing line 
between spatial frequency components of the turbulence 
whose period (spatial frequency) is so extremely large 
(small) that they do not have a significant impact on 
the optical propagation effects of interest and those 
components whose period (spatial frequency) is 
sufficiently small (high) that they do have significant 
optical propagation effects of interest.  We assume that 
we are not dealing with a propagation case for which 
the turbulence effects are too severe, that a value of P 
can be found which satisfies both this phase screen 
statistical independence requirement and also the 
requirement posed by Eq. (6). 

With P having a value that satisfies Eq. (6) [and 
Eq. (9)] we can, on the basis of physical 
considerations, regard all of the refractive index 
variations in the pth segment to be collapsed into a  
thin phase-screen which we shall denote by the notation 
N(r, p), positioned at the midpoint of the pth segment, 

i.e. located at $zp.  We have use the term œcollapsedB to 
imply that the phase-screen, N(r, p), can be written as 

N(r, p) = ⌡⌠
zp $ 1

zp

 dz n(r, z)  (10) 

and accordingly replace n(r, z) in Eq. (4) as 

n(r, z) ⇒ ∑
p = 1

P

 N(r, p) δ(z $ $zp) .  (11) 

so that in place of Eq. (4) we have 

{∇2
r
 ± 2ikäz + 2k2[∑ N(r, p) δ(z $ $z)p]} u(r, z) = 0 . 

  (12) 

This, it should be noted, is the form of the wave 
equation that is assumed in the formulation of most (if 
not all) computer wave optics propagation simulation 
codes. 

A key part of the physics insight that goes into the 
scaling law derivation lies in the recognition that for 
the optical effects of interest to us Eqs. (6) and (9) 
justify our writing Eq. (11) [and from that Eq. (12)].  
That physics insight lies in our recognition that 
whether the actual refractive index variation are 
distributed in a continuous form as specified by n(r, z), 
or are distributed in a spatially quantized form 
(quantized along the z-axis) as specified by N(r, z) the 
way the refractive index variations affect the optical 
propagation will be very nearly the same.  As noted in 
the discussion following Eqs. (8) and (9) the basis for 
this physics insight lies in the fact that if Eqs. (6) and 
(9) are satisfied then the propagation of a distorted 
optical field from one screen to the next screen with 
refractive index induced phase shifts applied only at the 
screens (and with no refractive index variation between 
the screens) will result in essentially the same field 
incident on the second screen as would arrive at the 
second screen when propagating through the continuous 
distribution of refractive index variation between the 
screens (with no phase shifts being applied by the 
screens themselves). 

We now introduce the farther assumption (also 
inherent in the use of computer wave optics 
propagation simulation codes) that 

Z/P >>  | r $ r′| ,  (13) 

where r and r′ are any two transverse position vectors 
that we may want to consider.  The validity of 
Eq. (13), which is certainly true for all cases we are 
aware of and probably for all that we could conceive 
of, allows us to infer from the two-thirds power law of 
Kolmogorov statistics that applies for the refractive 
index variations, namely that 

<[n(r1, z1) $ n(r2, z2)]2> = C2
N (1

2
(z1 + z2)) × 

× [|r1 $ r2|2 + (z1 $ z2)2]1/3,  (14) 

that the corresponding statistics of the phase-screen 
N(r, p) are given by the equation 

<[N(r1, z1) $ N(r2, z2)]2> ≈ 

≈  

⎝
⎜
⎛

⎠
⎟
⎞

2.91 ⌡⌠
zp $ 1

zp

 dz C
2
N(z)  [|r1 $ r2|5/3] .  (15) 
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Consideration of Eq. (13) suggests that we 
introduce the quantity R = ⏐r $ r′⏐ where r and r′ 
represent a pair of transverse position vectors that are 
as widely separated as any two that we may wish to 
consider.  (For system performance studies this might 
correspond to a length some what larger than the 
aperture diameter or the beam diameter if the beam 
diverges, or it might correspond to several times the 
Fresnel length, L, for point source propagation studies.  
Exactly what will govern the determination of the 
particular value of R need not be specified here.)  The 
inverse of this dimension R or of some moderate 
multiple of R can be considered to define the concept 
referred to earlier of an exceptionally low spatial 
frequency.  So long as Eq. (13), or as we shall write it 
here 

Z/P >> R ,  (16) 

is satisfied then we can conclude that for all of the 
spatial frequency components of the turbulence which 
do significantly impact the optical effects of interest $
 effects concerning intensity variations and concerning 
higher order wave front distortion $ the period of the 
component’s spatial frequency is very much less than 
the thickness of a segment.  For these components there 
should consequently be only a very small correlation 
between the contribution to two separate segments and 
their associated phase screens, even if the phase screens 
are adjacent.  For the extremely low spatial frequency 
components, since they have no optical effect of 
interest to us here, we can make the incorrect (but 
inconsequential) assumption that their contribution to 
any two phase screens are also uncorrelated.  This 
allows us to write 

<[N(r1, p) $ N(r2, p)][N(r′1, p′) $ N(r′2, p′)]> ≈ 0 

for p ≠ p′ .  (17) 

(It may be noted that this approximation is customarily 
incorporated into the running of most computer wave 
optics propagation simulation codes.)  Equation (17) 
carries the implication that the individual phase-screens 
can be treated as being statistically independent from 
phase-screen to phase-screen. 

We shall consider the phase-screens to be defined 
in terms of an ensemble of œunit strengthB random 
functions; ν(ρ, *), governed by the same sort of five-
thirds power law as in Eq. (15).  Here ρ denotes a 
dimensionless two-component (œpositionB) vector.  
(That we can use such a function to present the 
statistics of turbulence is due to the essentially scaleless 
nature of Kolmogorov turbulence.)  The asterisk, *, 
appears as an œargumentB of the ν-functions to indicate 
that we are interested in a randomly selected realization 
of the function ν, and that the appearance of this 
function two or more times in an equation does not 
imply that the same realization is intended.  Only if the 
asterisk appears subscripted, with the same value of the 
subscript in each occurrence, is to be understood that 

the same realization is intended.  For example if we 

write ∑
m

 ν(ρ, *m), since in each occurrence of ν(ρ, *m) 

in the summation the value of m is different, the 
individual terms, i.e. ν(ρ, *1), ν(ρ, *2), ν(ρ, *3), ..., are 
to be understood as each representing different, 
randomly selected realizations of ν. 

The function ν(ρ, *) is to be understood, by 
definition, to have the statistical property that 

<[ν(ρ1, *a) $ ν(ρ2, *a)] [ν(ρ1, *b)$ ν(ρ2, *b)]> = 

= ⎣
⎡2.91|ρ1 $ ρ2|5/3, if *a = *b,
0, if *a ≠ *b.

  (18)  

Considering Eq. (15), we can see that this allows 
us to consider the ensemble of N(r, p)-functions to be 
replaceable by the ensemble of ν(ρ, *)-functions with 
the replacement equation being 

N(r1, p) ⇒ L5/6 Cpν(r/L,*p) ,  (19) 

where 

Cp = ⌡⌠
zp $ 1

zp

 dz C2
N(z) .  (20) 

It will prove convenient if we introduce here the 
notations C and cp, defined by the equations 

C = ⌡⌠
0

Z

 dz (z/Z)5/6 (1 $ z/Z)5/6 C2
N(z) (21) 

and 

cp = Cp/C .  (22) 

This allows Eq. (19) to be rewritten as 

N(r1, p) ⇒ L5/6 C cp ν(r/L,*p) .  (23) 

Making use of Eq. (23) we can recast Eq. (12) as 

(∇2
r

 ± 2ikäz + 2k2C( ∑
p = 1

P

 L5/6 cpν(r/L,*p) δ(z $ $zp))) × 

× u(r, z) = 0 .  (24) 

With this result in hand we are ready to turn our 
attention to the scaling law formulation.  This is 
treated in the next section. 

 
5. SCALING THE FORMULATION 

 

We shall reformulate Eq. (24) by making the 
change of variables from r to ρ and from z to ζ, where 

ρ = r/L  (25) 

and 

ζ = z/Z .  (26) 

We note that accordingly we have 

∇2
r
 = L$2 ∇2

ρ  (27) 
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and 

äz = Z$1 äζ .  (28) 

Defining 
$ζp by the equation 

$ζp = 
$
zp/Z  (29) 

and taking note of the fact that the property of the 
Dirac delta-function is such that 

δ(z $ zp) ⇒ Z$1 δ(ζ $ ζp) ,  (30) 

we can reformulate Eq. (24) as 

{L$2 ∇2
ρ ± 2ikZ$1äζ + 

+ 2k2C[ ∑
p = 1

P

 L5/6 cpν(ρ,*p) Z$1 δ(ζ $ 
$ζp)]} × 

× u(L ρ, Zζ) = 0 .  (31) 

If we introduce the function v(ρ, ζ) defined by the 
equation 

v(ρ, ζ) = u(Lρ, Zζ) ,  (32) 

with the inverse relationship 

u(r, z) = v(r/L, z/Z) .  (33) 

and make use of Eq. (2) we can recast Eq. (31) as 

{(k/Z) ∇2
ρ ± 2i(k/Z)äζ + 

+ 2(k/Z)k7/12 Z5/12C[ ∑
p = 1

P

 cpν(ρ,*p) δ(ζ $ 
$ζp)]} × 

× v(ρ, ζ) = 0 .  (34) 

If we divide through by the quantity k/Z and 
recognize from consideration of Eqs. (1) and (21) that 

k7/12 Z5/12 C = R1/2,  (35) 

then we see that Eq. (34) can be rewritten as 

(∇2
ρ ± 2iäζ + 2R1/2( ∑

p = 1

P

 cpν(ρ,*p) δ(ζ $ 
$ζp)]} × 

× v(ρ, ζ) = 0 .  (36) 

This non dimensional form of the propagation 
equation is our basic analytic result.  Any solution for 
v(ρ, ζ) can be scaled, using Eq. (33), to apply to a 
variety of different cases $ cases with the same R and 
the same distribution of cp values. 

Equation (36) should be interpreted as follows.  For 
any two propagation cases, if the distribution of 
turbulence along the two paths follows the same pattern 
(for example that both are uniform, or that both fall off 
exponentially each decreasing by the same factor from 
one end of the path to the other end of the path) as 
would be indicated by having the same set of values for 
cp and if the absolute strength of turbulence, the path 
length, and the wavelength are such that the two have 
the same Rytov number, R, then both will have the same 
form of the non dimensional propagation equation, i.e. of 

Eq. (36), and will have identical forms for the non 
dimensional wave function, v(ρ, ζ). 

This result concerning the equivalence of the 
propagation results, i.e. the random optical fields for two 
distinct cases implies that if we can run an experiment 
(or conduct a computer simulation) for one case, 
measuring the various random realizations of u(r1, Z1) for 
that case, we can calculate the associated values of 
v(ρ, ζ) using Eq. (32), and then can consider these v-
values to apply with corresponding likelihood to the 
other case and use Eq. (33) to calculate a statistically 
equivalent set of values of u(r2, Z2) for the second case.  
[Here and in what follows the subscripts 1 and 2 are 
being used to denote the variables (or parameters) of the 
two cases.]  Any result calculated from the intensity and 
the higher order wave front distortion will be properly 
evaluated for case 2 if the results are obtained from the 
thus scaled results obtained for case 1. 

Considering Eq. (25), we can see that if the 
scaling requirements are satisfied, then what we 
measure for r1 will apply for r2 with 

r2 = r1(L2/L1) .  (37) 

Interestingly, since the pattern of the distribution 
of the strength of turbulence is the same for the two 
cases and the Rytov number, R, is the same for the 
two, then Eq. (37) also implies that what we measure 
for r1 will apply for r2 with 

r2 = r1[(r0)2/(r0)1] ,  (38) 

It can be inferred from this that in two 
experiments that are dependent only upon intensity 
(variations) and on higher order wave front distortion, 
if both experiments have the same Rytov number, R, 
and if there are two apertures whose diameters, D1 and 
D2, are in the same ratio as (r0)1 is to (r0)2, or as L1 is 
to L2, then the two optical systems will be equally 
affected by turbulence.  Similarly it can be argued that 
for angles scaled in accordance with λ/D 
anisoplanatism effect will be identical.  In all of its 
dependences adaptive optics antenna gain (which is 
dependent only on intensity variations and upon higher 
order wave front distortion) will be equivalent for two 
cases that have appropriately scaled parameter values. 

 

6. COMMENTS 
 

It is in a way quite instructive to consider what 
these scaling law results mean for the investigation of 
optical propagation effects related to intensity 
variations and to higher order wave front distortion 

when, for example, the strength of turbulence, C 2
N, is 

uniform along the entire length of the propagation 
path, and the inner scale of turbulence, l0, is small 
enough to be considered to be inconsequential.  There is 
only a one dimensional array of cases to be considered. 
This makes the idea of a fairly comprehensive numerical 
study of the entire span of the problem appear 
plausible $ certainly an intriguingly possibility. 
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It is perhaps worth remarking here that our 
exclusion of area average wave front tilt from the 
phenomena that were covered by the scaling laws 
(and possibly even the exclusion of phase at a  point 
and area average phase) may have been overly severe.  
If the variation over only moderately short time 
periods is being considered then the extremely low 
spatial frequency components of the turbulence are 
relatively inconsequential.  In such a case the scaling 
laws would apply to a study of tilt and phase effects, 
as well as to intensity variations and to higher order 
wave front distortion. 
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