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We discuss here modeling of thermal destruction of the atmospheric ice 
particles under the action of high-intensity radiation at λ = 10.6 μm. Solution of 
the problem is divided into the following stages: (1) choosing and justification of a 
geometrical model of the ice particles; (2) electrodynamics calculation of the  heat 
release distribution inside a particle; (3) numerical solution of the heat transfer 
equation with the relevant initial and boundary conditions; (4) approximate 
solution of the elasticity equation.  The results obtained for sufficiently large 
spherical and cylindrical ice particles are compared.  The exposure time, during 
which a particle is destroyed, is estimated as a function of the radiation intensity. 
The specific, volume-averaged, energy sufficient for the destruction of particles is 
shown to slightly depend on the radiation intensity and particle shape while being 
mainly dependent on the particle radius. 

 
1. INTRODUCTION 

 
The problem on nonlinear interactions of radiation 

with an individual particle of atmospheric aerosol is a 
key problem in the investigations of high-power laser 
beam propagation in clouds and fogs.1  One of the most 
complicated task is the study of radiation interaction 
with crystal particles.2,3 Since experiments on  
interaction of high-power radiation with ice clouds are 
very complicated, the mathematical simulation of some 
aspects of this problem based on some physically 
justified assumptions seems to be useful. 

The aim of this study was simulation of thermal 
destruction (cracking) of atmospheric ice particles 
under the action of high-power radiation at 
λ = 10.6 μm. Solution of the problem involves the 
following stages: (1) choosing and justifying of the 
geometrical model of ice particles; (2) electrodynamics 
calculation of the optical field distribution and heat 
release inside particles with the allowance for all  
the main factors determining the distribution; 
(3) numerical solution of the heat transfer equation 
with the corresponding initial and boundary conditions, 
which allows one to follow up the dynamics of the 
temperature field inside a particle; (4) solution of the 
thermal elasticity equation in order to determine the 
conditions under which thermoelastic stresses arising 
inside a particle exceed the critical value for ice and 
lead to thermal destruction of a particle. 

At present, thus complicated problem can hardly 
be solved in its most general formulation. So, we have 

made some physical assumptions, which allow an 
approximate solution of the problem to be obtained. 

 
2. MODELING OF A PARTICLE 

 
Ice particles are characterized by various shapes and 

size varying in a very wide range. The above problem can 
now be solved only for bodies of some very simple 
geometry. We have chosen an infinite circular cylinder as 
a model of ice particles. Regardless of the idealization, 
the model enables one to describe semi-quantitatively 
some aspects of thermal destruction of strongly elongated 
cirular and columnar ice particles, whose length 
significantly exceeds their cross size and the wavelength 
of incident radiation. For comparison, similar model 
calculations have been performed for spherical ice 
particles, following our earlier papers.4,5 

 
3. DISTRIBUTION OF THE OPTICAL FIELD AND 

HEAT RELEASE INSIDE PARTICLES 

 
As known,6 the heat release (the power of a heat 

source Q per unit volume) at a point within a cylindrical 
particle described by cylindrical coordinates r, z, ϕ or a 
spherical particle with the spherical coordinates r, θ, ϕ is 
determined by the following relation: 
 

Q = 4π n iIB/λ n0, 
 

where n and i are the real and imaginary parts of the 
complex refractive index of ice (in our calculations,  
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we assumed n = 1.1013 and i = 0.134 (Ref. 7)). It 
was also assumed that the medium around the particle 
did not absorb radiation and its refractive index is 
n0 = 1. In the above expression, λ is the wavelength 
of incident radiation; I is the radiation intensity; 

B = (E*
r  Er + E*

ϕ Eϕ + E*
z Ez)/E

2
0 (for a spherical 

particle, the subscript z must be substituted by θ); E0 
is the strength of the electric field of incident radiation. 
The values of the electric field components Er, Eϕ, and 
Ez inside the cylinder have been calculated according to 
the exact theory of diffraction on an infinite 
cylinder.8,9 However, in contrast to Ref. 9, the 
cylindrical functions were computed using the 
continued fraction method10 and direct calculation of 
Bessel functions J0 by the method proposed in Ref. 11. 
The components Er, Eϕ, and Eθ in the case of a sphere 
have been calculated by the Mie theory.6,9 

As was noted in Ref. 2, elongated crystals in 
clouds may have a preferred orientation, i.e., the 
largest deviation from the horizontal orientation with 
reference to the Earth’s surface does not exceed several 
degrees. If a high-power radiation source is on the 
ground, it is reasonable to suppose that cylindrical 
particles are illuminated along the normal (α = 0°). To 
compare the results obtained for spherical and 
cylindrical particles and to simplify the calculations, 
we have assumed the incident wave to be  unpolarized. 
The heat release has been computed for large ice 
particles with the cross-section radius R = 5$70 μm 
irradiated with radiation  at λ = 10.6 μm. The 
calculated results are not presented here, as they are 
preliminary for the problem to be solved. 

 
4. EQUATION OF THE HEAT TRANSFER IN  

A PARTICLE 

 
The problem on particle warming up by radiation 

in an unbounded medium can be reduced to solving the 
equation of heat transfer with the corresponding 
boundary and initial conditions. In the case of 
cylindrical particles, we have 
 

cP(T) ρ(T) 
∂T(r, ϕ, t)

∂t  = 
1
r
 
∂
∂r ⎝
⎛

⎠
⎞λ1(T) r 

∂T
∂r  + 

 

+ 
1

r
2 

∂
∂ϕ ⎝

⎛
⎠
⎞λ1(T) 

∂T
∂ϕ  + Q(r, ϕ, R). (1) 

 

For spherical particles (with no dependence on the 
angle ϕ, what is valid if the incident wave is 
unpolarized) 
 

cP(T) ρ(T) 
∂T(r, θ, t)

∂t  = 
1

r
2 
∂
∂r ⎝
⎛

⎠
⎞λ1(T) r2 

∂T
∂r  + 

 

+ 

1

r
2
 sinθ

 
∂
∂θ ⎝

⎛
⎠
⎞λ1(T) sinθ 

∂T
∂θ  + Q(r, θ, R), (1a) 

 

where 0 ≤ r < R; 0 ≤ θ ≤ π (sphere) or 0 ≤ ϕ ≤ π 
(cylinder); T is the temperature; ρ(Š), “P(Š), and 
λ1(Š) are the specific density, specific heat, and heat 
conductivity. The following conditions must be satisfied 
for the cylinder: 
 

$ λ1(T) 
∂T
∂t  

 
r = R

 = a [T(R, ϕ, t) $ Tamb], 

 

∂T
∂ϕ 

 
ϕ=0

= 
∂T
∂ϕ 

 
ϕ=π

= 0,  ⏐T(0, ϕ, t)⏐< ∞, 

 
T(r, ϕ, 0) = T0, (2) 
 
where a is the heat exchange coefficient at the interface 
with the ambient gaseous medium; Tamb is the ambient 
temperature; T0 is initial temperature of a particle (the 
conditions for a sphere can be obtained from the 
conditions (2) when replacing the coordinate ϕ by θ). 

The algorithm for numerical solution of the 
systems of equations (1) and (2) is similar to that 
presented in Ref. 6. An absolutely stable locally one-
dimensional iteration scheme is being constructed on a 
space-time grid. The initial problem is put into the  
correspondence with the difference problem. Thus  
obtained system of equations is then solved by the 
sweep method. 

The thermal characteristics of the fresh-water ice 
and their temperature dependence have been taken from 
Ref. 12. Thus, within the temperature T range from 210 
to 273 K the relations ρ = 0.951 $ 0.0012 Š; 
“P = 0.0078Š $ 0.0094, λ1 = 0.004685 + 4.8819Š$1 (where 
ρ is in g/cm3; “P is in J/g ⋅ K; and λ1 is in 
W/(cm2 ⋅ K)) provide for accuracy of 1, 0.16, and 
15%, respectively. The coefficient a can be found from 
the known relation13 
 

a = β 
p

2π MkT
 ⎝
⎛

⎠
⎞cV + 

1
2
 k  , (3) 

 
where β is the accommodation coefficient (β ≈ 0.7 $ 1.0); 
! is the gas pressure near the particle surface;  
M is the mass of a gas molecule; T is the gas 
temperature; cV is the heat capacity at constant volume 
(for nitrogen and air cV = 5k/2); k is the Boltzmann 

constant. For nitrogen, a = 0.0209/ T, in 
W/(cm2⋅K), in the temperature range from 210 to  
273 K. 

 
5. THE HEATING MODE AND APPROXIMATIONS 

USED 

 
Suppose that intensity of laser radiation is 

sufficiently high for quick heating of a particles. In 
such a case, considerable temperature differences and, 
consequently, considerable thermoelastic stresses  
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should arise inside a particle. In the most general case, 
the problem of calculation of these stresses requires 
joint solution of the heat transfer equation (1) and the 
equilibrium equation14 for a solid body: 
 
1 $ γ

1 + γ grad div U $ 
1 $ 2γ

2 (1 + γ) rot rot U = αT ∇T, (4) 

 
where U is the deformation vector; γ is the Poisson 
coefficient; αT is the linear coefficient of heat 
expansion for ice. Since solving of the problem in its 
general form is too difficult, we restrict ourselves, at 
this stage, to a simplified situation. Considering this 
situation, it is easy to obtain the results, which are not 
numerically accurate but giving the general pattern 
with clear qualitative regularities. 

The exact solutions to the problem of 
thermoelastic stresses in cylindrical or spherical bodies 
with axially or centrally symmetric temperature 
distribution are considered in detail in the theory of 
thermoelasticity.15$18 It is shown (see, for instance, 
Ref. 18, Chapter 7) that the maximum stresses occur 
under heating as tangential components σt on the body 
surface. Let us suppose that the symmetric profile of 
the temperature distribution has the form of the power 
dependence on the relative radial coordinate 

x = r/R : T(x) = T(0) + xν ΔT, where ν is the 
exponent characterizing the steepness of the profile; 
ΔT = T(1) $ T(0). Then the maximum values of σt are 
expressed through the mechanical properties of the 
substance and the parameter ν: 
 

σcyl
t  = $ 

ν
ν + 2

 ΔT 
2G (1 + γ)

1 $ γ  αT, 

 

σsphere
t  = $ 

ν
ν + 3

 ΔT 
2G (1 + γ)

1 $ γ  αT, (5) 

 
where G is the displacement module. 

Our numerical calculations of the temperature 
fields inside cylindrical and spherical ice particles with 
R > 15$20 μm have revealed the following: if particles 
are irradiated by high-intensity laser radiation with 
λ = 10.6 μm, the temperature distribution profile in the 
irradiated hemisphere along the radius coinciding with 
the incident beam direction really has the form of 
exponential function with different ν and ΔT. The 
values of ν and ΔT depend on the radius of a particle, 
the radiation intensity, and the maximum temperature; 
and these values vary during heating. The maximum 
temperature Tmax (on the particle surface) and the 
maximum temperature differences ΔT between the 
center and the surface take place just on this radius. 
Since ice is a brittle substance, it is natural to suppose 
that the point with Tmax is just the point where the 
cracking limit is achieved. There comes a time when the 
absolute value of σt achieves or exceeds the critical 
value of the ultimate strength σcr of the substance. 

Although the temperature distribution is evidently 
not symmetric, we nevertheless apply the solution (5) 
obtained for an ideally symmetric situation to the 
radius. This is the main assumption of the paper. Then 
we can find the critical temperature difference, at 
which the destruction occurs: 
 

ΔTcyl
cr  ≥ 

σcr (1 $ γ)

2G αT (1 + γ) 
(ν + 2)

ν  , 

 

ΔTsphere
cr  ≥ 

σcr (1 $ γ)

2G (1 + γ) αT

 
(ν + 3)

ν  . (6) 

 
Thus, the problem is reduced to solution of  

inequalities (6) with allowance for the following 
factors: the mechanical properties of ice (γ, G, αT, σcr) 
varying with temperature and, consequently, in time; 
the degree of steepness of the temperature profile ν 
depending on the particle size, the radiation intensity, 
and the maximum temperature reached by a given time. 
The value of ν is determined from solution of the 
problem on the dynamics of the temperature field inside 
a particle, i.e., from solution of the heat transfer 
equation with the corresponding initial and boundary 
conditions. 

 
6. VALUES OF THE MECHANICAL CONSTANTS 

 
Since a heated particle undergoes a stress in 

compression, we have taken the generalized data12,19 on 

the most probable values of σcomp
cr  (varying from 1.6 to 

4.0 MPa as the temperature varies from 273 to  
248°C) as the limit stresses. This limit remains 
practically constant at lower temperatures. 

As follows from numerous experimental data, the 
Poisson coefficients for ice vary not very widely 
depending on concrete samples and measurement 
conditions. Reference 12 recommends to use the 
coefficient γ ≈ 0.36 for freshwater ice. The tabulated 
data12 on the temperature dependence of the linear 
expansion coefficient for ice can be approximated  
by the expression αT [K$1] = 1.8859⋅10$8 T1.4181 
accurate to 4%. The displacement module G varies 
approximately from 3.07 to 3.36 hPa according to the 
data of different authors obtained for different 
samples.12 If we take the mean value G = 3.335 hPa, 
then l(Š) = 1.4973⋅104 T$1.4181 for the temperature 
from 210 to 250 K and l(Š) = 5.8991 ⋅ 103 $ 
$ 69.737 T + 0.27523 Š2 $ 3.623⋅10$4 T3 for the 
temperature from 250 to 273 K; where M(T) is the 
first, i.e., œmechanicalB factor in the right-hand side of 
Eq. (6). This more complicated form of the relation for 
elevated temperatures is caused by the fact that the 
value of the critical stress σcr in compression is already 
not constant within this interval, but temperature-
dependent in a rather complicated way (Ref. 12, 
Table 4.9). 
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7. COMPUTED RESULTS 

 
Before exposure to high-power laser radiation, a 

particle was supposed to be in the thermal equilibrium 
with the ambient gaseous medium at the temperature 
Šamb = 210 K. Computations were performed for the 
intensity of laser radiation I = 2⋅103 $ 108 W/cm2. 
Under these conditions, a particles of any size break 
down far before its temperature achieves the ice melting 
point. When analyzing the results, most attention was 
paid to comparison of spherical and cylindrical 
particles. 

The similar heat release inside large cylindrical 
and spherical particles leads to very similar character of 
their heating under exposure to laser radiation with 
λ = 10.6 μm. Some examples are shown in Fig. 1. The 
behavior of the curves in Fig. 1 confirms that the 
temperature profile at the main radius can really be 
described by an exponential function. Small deviations 
are observed only for not very large particles at 
relatively low intensities; they are most marked  
(within 5%) near the irradiated surface. Thus, curves 
like those presented in Fig. 1, especially for particles 
with R > 20 μm, confirm the validity of the main 
assumption. 

 
 

FIG. 1. Temperature distribution T, in K, along the 
main diameter of ice cylindrical (solid curves) and 
spherical (dashed curves) particles by the time of 
their destruction: R = 15 μm (a) and 50 μm (b). 
The figures at the curves show the radiation 
intensity I, in W/cm2. The direction of radiation 
propagation is from left to right. 
 

It should be noted that, depending on particular 
conditions, the critical temperature difference ΔTcr can 
vary within a wide range (in contrast to constant 
ΔTcr = 10 K accepted in Refs. 4 and 5). 

As one could suppose based on Eq. (6), 
destruction of spherical particles requires somewhat 
higher critical temperature difference ΔTcr between the 
irradiated surface and the center than in the case with 
cylindrical particles. The data on the time of 
destruction for spherical and cylindrical particles under 
the same conditions (Fig. 2) also confirm the 

conclusion that requirements for destruction of 
cylindrical particles are not so rigid as compared to 
spherical particles. It follows from the calculated 
results that the time tdestr from the beginning of 
exposure to radiation with the intensity I = 104 $ 
$ 108 W/cm2 to the destruction of particles of both 
types can be described by the relation log(tdestr) = 
= a + b log I. For cylindrical particles of radii R = 15$
70 μm, the coefficients a and b take values from $1.59 
to $1.95 and from $1.032 to $1.017, respectively. For 
spherical particles, the corresponding coefficients vary 
from $1.44 to $1.94 and from $1.032 to $1.013. The 
difference between the values of tdestr for a sphere and 
a cylinder decreases with increasing R. 

 
 

FIG. 2. Time tdestr, in μs, from the beginning of 
irradiation to destruction of ice cylindrical (solid 
curves) and spherical (dashed curves) particles 
versus the radiation intensity I, in W/cm2. The 
figures at the curves indicate the particle radius R, 
in μm. 

 

Now let us turn to analysis of the main 
characteristic of the thermal destruction of ice particles 
under the exposure to high-power laser radiation, 
namely, to the energy absorbed by particles from the 
beginning of irradiation to the time of achieving the 
destruction conditions. It is determined by the relation 
Eabs = Itdestr Cabs, where Cabs is the absorption cross 
section (for an infinite cylinder, the cross section is 
calculated per unit length). For a correct comparison of 
the results obtained for particles of different shape, 
Cabs should be normalized to the particle volume: 
qabs = Cabs/V (for an infinite cylinder, by the volume 
is meant the volume of its part with a unit length). The 
calculated results for the value of qabs are presented in 
Fig. 3. The shape of the curves in Fig. 3 permits the 
following conclusions to be drawn: 

a) as a rough estimate, we can assume that the 
value qabs ≈ 10 μJ/μm3 is sufficient to break down 
large (R > 15 μm) ice particles in the considered range 
of radiation intensity; 

b) spherical particles require higher qabs values, as 
compared to the cylindrical ones, as could be expected 
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according to the theory of thermoelasticity (see, for 
instance, Refs. 14$18). However, the difference is not 
large (by 1.3$1.7 times), and it decreases with 
increasing R; 

c) the dependence of qabs on I is very weak at the 
radiation intensity higher than 2 ⋅ 104 W/cm2. 

 
FIG. 3. Volume-averaged energy qabs, in μJ/μm3, 
absorbed by ice cylindrical (solid curves) and 
spherical (dashed curves) particles for the time 
from the beginning of irradiation to destruction of 
a particle versus the radiation intensity I, in 
W/cm2, (a) and the particle radius R, in μm, at 
I = 108 W/cm2 (b). The figures at the curves (a) 
indicate the particle radius R, in μm. 
 

Since a sphere and an infinite circular cylinder are 
very different and, in some sense, extreme geometrical 
models of ice particles, the close results obtained for 
these models allow us to suppose, at least at the 
qualitative level, that ice particles of other 
(intermediate) shapes break down under exposure to 
high-power laser radiation following approximately the 
same regularities. 
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