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A modification of the WKB approximation is proposed, which allows its 
correct application to optically œsoftB particles at large scattering angles (larger 
than 90 $ 100°).  Capabilities of the modified WKB approximation are 
demonstrated as applied to calculation of the scattering phase function (or its 
element f11) for a cylindrical particle in comparison with the standard WKB and 
Rayleigh#Gans#Debye approximations.  Expressions for calculation of 
backscattering cross section of the cylindrical particle are derived in the standard 
and modified WKB approximations. 

 
1. INTRODUCTION 

 

Light scattering methods have long been 
successfully used in research on atmospheric and 
oceanic optics, medicine, and biology.  Interpretation of 
results of such research requires some models of objects 
under study to be applied.  Besides, because strict 
calculations of light scattering characteristics for 
particles of random shape and structure are very 
complicated and sometimes even impossible, numerous 
approximations are used.1 

For so-called optically soft scattering particles 
(⏐n $ 1⏐<< 1, where n is the relative refractive index of 
a particle) the sufficiently strict WKB approximation 
can be used. This approximation, as proved in Refs. 2 
and 3, includes both the Rayleigh#Gans#Debye 
(RGD) approximation and the anomalous diffraction 
(AD) approximation, as well as the Fraunhofer 
diffraction approximation. 

However, the WKB approximation adequately 
describes differential light scattering characteristics 
mostly for small scattering angles β < 40$50°.  
Therefore, in this paper an attempt is undertaken to use 
the slightly modified WKB approximation for 
cylindrical particles at large scattering angles.  The 
grounds for this modification and its consequences for 
spherical particles have been considered in Ref. 4. 

 

2. LIGHT SCATTERING AMPLITUDE IN THE 

STANDARD AND MODIFIED WKB 

APPROXIMATIONS 

 

Using the integral form of the light scattering 
amplitude, upon some regrouping, in the WKB 
approximation we have5 (for wave incidence along the 
z-axis): 

f (s, i) = 
k2

4π [$ s × (s × ei)] ⌡⌠ (n2 $ 1) × 

× exp 

⎣
⎢
⎡

⎦
⎥
⎤

ik ⌡⌠
z1

z

 (n $ 1) dz $ ikr ′ (s $ i)  dV′, (1) 

where s and i are the unit vectors along the scattering 
and propagation directions, respectively; z1 is the 
entrance coordinate of a point on the particle surface 
for the wave passing through the point r; k = 2π/λ is 
the wave number; λ is the wavelength in a dispersion 
medium; ei is the unit vector in the direction of 
incident wave polarization. 

As shown in Ref. 4, the expression for the light 
scattering amplitude in the modified WKB (MWKB) 
approximation has the doubled exponential factor in 
the integrand, which is responsible for the beam phase 
shift, that is 
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The MWKB approximation is applicable provided 
that the following conditions are met4: 

1) ⏐n $ 1⏐<< 1/2, that is, the condition of optical 
softness becomes stronger; 

2) large scattering angles, that is, small angles 
β << 1 rad are excluded; 

3) small phase shift Δ ≤ 4$5, where Δ = 2ρ (n $ 1). 
The MWKB approximation4 gives more reliable 

results for spherical particles at large scattering angles 
than the RGD approximation does. 

Consequences of application of the MWKB 
approximation to cylindrical particles are discussed 
below. 
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3. SCATTERING AMPLITUDE AND PHASE 

FUNCTION FOR CYLINDRICAL PARTICLES 

 
The expression for the scattering amplitude of a 

cylindrical particle (the symmetry axis along the 
incident beam) in the standard WKB approximation 
has been earlier obtained in Ref. 6: 

f(β) = 
(kR)2

 H (n2 $ 1) exp (ikH (n $ 1)/2)

2
 × 

× 
J1 (kR sin(β))

kR sin(β)
  

sin(kH (n $ cos(β))/2)

kH (n $ cos(β))/2
 ,  (3) 

where R is the cylinder radius; H is its height. 
Similarly, the MWKB approximation gives from 

Eq. (2) 
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 H (n2 $ 1) exp (ikH (n $ 1))

2
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J1 (kR sin(β))
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The scattering phase function [or its element f11 
for the natural light (random polarization)] was 
calculated by the expression 

f11(β) = 
1 + cos

2(β)

2
 k2⏐f(β)⏐2,  (5) 

where ⏐f(β)⏐2 is the square of the absolute value of the 
scattering amplitude from Eq. (3) or (4). 

Using Eqs. (3) and (4) and taking into account 
Eq. (5), as well as the scattering amplitude in the 
RGD approximation,5 we have calculated the scattering 
phase function in the RGD, WKB, and MWKB 
approximations for the cylindrical particle oriented 
along the sensing direction (Fig. 1). Values have not 
been scaled to the forward scattering direction. It is 
seen from Fig. 1 that the values differ widely for large 
scattering angles. In the contrary case of a disk-like 
particle, all the three approximations give close results. 

 
 

 
Scattering angle β 

 

FIG. 1. Logarithm of the scattering phase function of the cylindrical particle Ln(f11(β)) versus the scattering angle 
β in the WKB (1), RGD (3), and MWKB (2) approximations for kR = 1 and kH = 25 at n = 1.02. 
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4. BACKSCATTERING CROSS SECTION OF 

CYLINDRICAL PARTICLES 
 

Using the known general expression for the 
backscattering cross section5 (scaled to the cross section 
area): 

σb

πa2 = 
4
a2 ⏐f($ i, i)⏐2  (6) 

and Eq. (3), in the WKB approximation we have 
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while in the MWKB approximation, with use of 
Eq. (4): 
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and in the RGD approximation5: 
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Note that under the standard condition  
⏐n $ 1⏐<< 1 (optical softness of a particle) with small 
error n + 1 ≈ 2.  Upon some transformations, it follows 
herefrom that the backscattering cross section in the 
WKB approximation (7) can be reduced to that in the 
RGD approximation (9). 

 

 

5. CONCLUSION 

 
The capabilities of the MWKB approximation 

are demonstrated as applied to calculation of the 
scattering phase function of the cylindrical particle 
(the symmetry axis along the incident light) in 
comparison with the standard WKB and Rayleigh#
Gans#Debye approximations.  The expressions for 
calculation of the backscattering cross section of the 
cylindrical particle in the modified and standard 
WKB approximations are derived.  Based on the 
earlier calculations for spherical particles, we can 
expect that the expressions for backscattering cross 
section of the cylindrical particle derived in the 
MWKB approximation will yield more reliable results 
than those derived in the RGD and WKB 
approximations do. 
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