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The problem of calculation of the sextic centrifugal distortion constants is 
considered within the framework of the "expanded local mode approach" for XY2 
(C2v), XY3 (C3v), and XY4 (Td) molecules with relatively heavy X nucleus.  Some 
conditions imposed on the structure and dynamic characteristics of molecules of this 
type allow significantly simpler derivation of analytical expressions for parameters 
of the effective rotational Hamiltonian. The simple expressions can be thus 
obtained for the sextic centrifugal constants.  As an illustration, the corresponding 
values of the centrifugal constants are calculated using these expressions for such 
molecules as H2Se, H2S, AsH3, SbH3, CH4, SiH4, and GeH4.  The correspondence 
between the calculated and experimental values is demonstrated. 

 
INTRODUCTION 

 
Fast progress of microwave and infrared 

spectroscopy in the last decades allowed calculation of 
some (or even all) sextic centrifugal distortion 
constants for different polyatomic molecules.  At the 
same time, derivation of analytical formulas expressing 
the sextic constants through the molecular constants 
requires at least the fourth order of the perturbation 
theory to be considered, what is too complicated and 
extremely laborious process.  Besides, the result is very 
cumbersome and hard-to-analyze.  However, there are 
strong grounds for believing that for some molecules 
(for example, for molecules of the XYN type with 
relatively heavy X nucleus, see Ref. 1) the 
corresponding expressions for the sextic centrifugal 
constants can be significantly simplified using the local 
mode approach actively developed in recent years.  As 
an example, we can note the well-known results of this 
approach as applied to derivation of the relations, 
including nontrivial ones, between different 
spectroscopic characteristics of molecules, in particular, 
between quadratic centrifugal distortion constants for 
XY2 (Ref. 2) and XY3 (Ref. 3) molecules.  The 
restrictions imposed on the molecules of this type are 
the following: 

1) the mass ratio between Y and X atoms is a 
small value tending to zero in the limit; 

2) for XY2 and XY3 molecules the equilibrium 
angle between the valency bonds is close to 90°; 

3) the contribution from valency oscillations into 
the potential function of a molecule is far greater than 
that from deformation oscillations. 

The use of these conditions in this work allowed us 
to obtain a number of interesting relations between the 
sextic centrifugal distortion constants for XY2, XY3, 
and XY4 molecules. 

XY2 MOLECULE OF THE C2v SYMMETRY 

 

Within the framework of the model considered, it 
becomes much simpler to calculate the parameters 
entering into the rotational$vibrational molecular 

Hamiltonian, because such parameters as a
αβ

λ , rotational 

constants Bα, rotational$vibrational and Coriolis 

constants ζ 

α

λμ, centrifugal quadratic constants ταβγδ, and 

potential constants kλμν, the functions of which are the 
sextic centrifugal constants, comply with  the following 
simple relations (see Ref. 2): 
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ω1 = ω3 ≡ ω,  k133 = 3k111;  (2a) 
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k122 = ωBe/(2θ) (1 $ 2θ2).  (2c) 

Using these relations in the expressions from Ref. 4, we 
can obtain 
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Here θ is the semiempirical parameter; Be is the 
equilibrium rotational constant (for details see Ref. 2); 

α
x
1 is the rotational$vibrational spectroscopic constant 

(Eqs. (3) may use, for example, its experimental value).  
The expressions derived for the sextic centrifugal 
distortion constants have a more complicated form than 
the similar expressions for quadratic centrifugal constants 
(see Ref. 2). This fact reflects the higher order of the 
perturbation theory used in derivation of Eqs. (3). 

The expressions (3) allow sufficiently correct 
prediction of values of the sextic centrifugal constants 
under conditions of minimum available information.  As 
an illustration, the first and fourth columns of Table I 
give the results of numerical calculation of the 
parameters HJ, HJK, HKJ, HK, hJ, hJK, and hK based on 
Eqs. (3) for the H2Se and H2S molecules, respectively. 
The presented below values of the parameters were used 
as initial data in the calculations. 

[H2Se] The value Be
x = 7.727 cm$1 was taken as the 

equilibrium rotational constant Be according to Eq. (1a); 

ω = 2438.5 cm$1 was taken as an arithmetic mean of the 
harmonic frequencies ω1 and ω3; θ = 0.4277 (all the 
values are borrowed from Ref. 2); and the rotational$

vibrational parameter α
x
1 = 0.1072 cm$1

 was taken from: 
 

[H2S] Be = B
e
x = 9.0181 cm$1

 (Ref. 6); ω = 2727.5 cm$1; 

 θ = 0.4447 (Ref. 7); αx
1 = 0.1237 cm$1 (Ref. 2). 

For the purposes of illustration, the calculated 
results are compared not only with the corresponding 
experimental data5,6 (given in the third and sixth columns 
of Table I), but also with the values of the centrifugal 
constants calculated without use of the local mode 
approach, by the exact expressions of the perturbation 
theory4 (given in the second and fifth columns). Such an 
analysis allows more adequate evaluation of the 
approximations used, because it excludes the influence of 
the models, which invoke, first, analysis of experimental 
data (effective rotational Hamiltonian) and, second, 
construction of perturbation series. 

 

 

TABLE I. Sextic centrifugal parameters of the H2Se and H2S molecules, 10$6 cm$1
. 

 

 H2Se H2S 

Parameter 
 

LM 
Exact 

expressions 

 

Experiment
 

LM 
Exact 

expressions 

 

Experiment 

   HJ 0.2205 0.1965 0.216541 0.2660 0.2259 0.27098 

   HJK $ 1.365 $ 1.231 $ 1.24626 $ 1.624 $ 1.458 $ 1.5329 

   HKJ 1.635 1.392 1.284898 1.919 1.457 1.2592 

   HK $ 0.04900 0.2655 0.449608 $ 0.0300 0.9943 1.3811 

   hJ 0.1102 0.09815 0.107858 0.1328 0.1128 0.13541 

   hJK $ 0.5309 $ 0.4707 $ 0.406704 $ 0.6273 $ 0.5399 $ 0.48509 

   hK 0.7421 0.7433 0.78668 0.8813 1.004 1.229 

 
 

 
As expected, the predictions of the sextic 

centrifugal distortion constants of the ground 
vibrational state based on the expanded local mode 
approach are wholly satisfactory. 

In fact, they are no worse than the predictions for 
the quadratic parameters made in the same 
approximations. This fact is illustrated by Table II, 
which presents the results for the quadratic constants 
calculated on the basis of expressions from Ref. 2 (the 
"expanded local mode approach") with the use of the 
same data as for the parameters HJ, HJK, HKJ, HK, hJ, 
hJK, and hK. 

 

TABLE II. Quadratic centrifugal parameters of the 

H2Se and H2S molecules, 10$3 cm$1
. 

 

 H2Se H2S 

 Calc. Exp. Calc. Exp. 

ΔJ 0.5211 0.5283 0.6218 0.652598

ΔJK $ 1.791 $ 1.849 $ 2.0739 $ 2.28026 

ΔK 2.273 2.6368 2.6465 3.7326 

δJ 0.2411 0.2425 0.28626 0.295517

δK $ 0.2495 $ 0.1833 $ 0.27676 $ 0.132618
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XY3 MOLECULE OF THE C3v SYMMETRY 

 

Let us remind the principal approximations of the 
model used as applied to XY3 molecules3: 

1) the mass M of the X-nucleus is far greater than 
the mass m of the Y-nucleus; 

2) the equilibrium value of the angle between the 
bonds 2αe is close to π/2; 

3) the interaction between the valency and 
deformation modes can be neglected in the quadratic 
part of the potential function: 
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1
2
 frr (Δr

2
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2
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2
3) + 

+ frr′ (Δr1 Δr2 + Δr1 Δr3 + Δr2 Δr3) + 

+ 
1
2
 fαα r

2
e (Δα

2
12 + Δα2

13 + Δα2
23) + ... . (4) 

It can be shown (see Ref. 3) that within the 
framework of these approximations the following 
relations, needed for calculation of the sextic 
centrifugal distortion constants, are valid: 

a
xx
1  = ayy1  = azz1  = 2 6Ie/3,  (5a) 

a
xz
31 = ayz32 = $ 2 axx31 = 2 ayy31 = 2 axy32 = 6Ie/3, (5b) 

a
xx
2  = ayy2  = $ azz2 /2 = $ 3Ie/3,  (5c) 

a
xx
41 = $ ayy41 = $a

xy
42 = 2 axz41 = 2 ayz42 = $ 6Ie/3; (5d) 

ζ
y
1,31 = ζx1,32 = ζy1,41 = ζx1,42 = 0;  

2 ζy2,31 = $ 2 ζx2,32 = 1,  (6a) 

2ζy2,41 = $ 2 ζx2,42 = $ 1; 2ζz41,42 = $ 1, ζz31,32 = 0,  (6b) 

2 ζz31,42 = 2 ζz41,32 = $ 1,  

2ζx31,42 = 2ζx32,41 = 2ζy31,41 = $ 2ζy32,42 = $ 1;  (6c) 

k122 = 3ω Be/(3θ) (1 $ 2θ2),  (7a) 

k222 = $ 6ωθ Be/6,  (7b) 

k133 = 3k111,  (7c) 
 

k333 = ( 2/2) k111,  (7d) 
 

k234 = k122,  (7e) 

k144 = k122,  (7f) 

k344 = $ ( 2/4) k122,  (7g) 

k244 = $ (3/2) k222,  (7h) 

k444 = $ ( 2/2) k222,  (7i) 

where 

Ie ≡ I
e
xx = Ieyy = Iezz = 2 mr

2
e; ω3 = ω1 ≡ ω. (8) 

Under these conditions, the expressions for the 
sextic centrifugal parameters are the following: 
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As an illustration, Table III gives the results for 
the centrifugal distortion constants of AsH3 and SbH3 
calculated with the use of the expressions derived.  All 
the data needed for calculation, as well as the 
experimental values of the centrifugal parameters, are 
borrowed from Ref. 8. 

[AsH3] Be = Be
x = 3.7516 cm$1; ω = 2196.0 cm$1 as 

an arithmetic mean of the harmonic frequencies ω1 and 

ω3; θ = 0.4415; the rotational$vibrational parameter αx
1

 = 0.037725 cm$1. 

[SbH3] Be = Be
x = 2.9697 cm$1; ω1 = 1951.5 cm$1; 

θ = 0.4179; αx
1 = 0.02619 cm$1. 

The comparison of the parameters presented in 
Table III shows that the expressions of the "expanded 
local mode approach" give the results at least no worse 
than those calculated by "exact" expressions of the 
rotational$vibrational theory. 

 

 

TABLE III. Sextic centrifugal parameters of AsH3 and SbH3 molecules, 10$8 cm$1
. 

 

 AsH3 SbH3 

 
 

LM 
Exact 

expressions

 

Experiment
 

LM 
Exact 

expressions 

 

Experiment 

   HJ 0.6805 0.7059 0.6817 0.3979 0.4222 0.37 

   HJK $ 1.118 $ 1.566 $ 1.207 $ 1.6819 $ 0.8593 $ 0.63 

   HKJ 1.145 1.347 0.53 0.6172 0.6183 0.2 

   HK 0.3441 0.2750 0.6740 0.2316 0.2894 0.44 
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XY4 MOLECULE OF THE Td SYMMETRY 

 
For the spherical top XY4 molecules we can say 

that the following relations are valid in the expanded 
local mode approximation: 

a
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It is known9 that the sextic centrifugal constants 
are parameters of the operator 
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To illustrate the usefulness of the relations 
derived, Table IV presents the predictions for the 
centrifugal parameters H, H4t, and H6t calculated by 
Eqs. (14) for the molecules CH4, SiH4, and GeH4 
along with the corresponding experimental values.  The 
following initial data were used in calculations: 

[CH4] Be = 5.16096 cm$1; ω = 3025.5 cm$1; 

θ = 0.5231; α1 = 0.0388 cm$1 (Ref. 10); 

[SiH4] Be = 2.859065 cm$1; ω = 2194.85 cm$1; 

θ = 0.4448; α1 = 0.0179 cm$1 (Refs. 11 $ 15); 

[GeH4] Be = 2.6969 cm$1; ω = 2110.86 cm$1; 

θ = 0.4428;  α1 = 0.018 cm$1 
 (Refs. 11, 13, 14, 16,  and  

17). 
The comparison of theoretical and experimental data 

given in Table IV shows quite satisfactory agreement not 
only for relatively "heavy" GeH4 and SiH4 molecules, but 
for the "light" CH4 molecule as well. 

 
TABLE IV. Sextic centrifugal parameters of the CH4, 

SiH4 , and GeH4 molecules, 10$8 cm$1
. 

 

Parameter Calc. Exp. 

 CH4 
H 0.44 0.46 
H4t $ 0.052 $ 0.057 
H6t 0.031 0.037 
 SiH4 
H 0.12 $ 
H4t $ 0.018 $ 0.020 
H6t 0.012 0.009 
 GeH4 
H 0.11 0.13 
H4t $ 0.016 $ 0.018 
H6t 0.011 0.010 

 

The results of prediction of the sextic centrifugal 
distortion parameters, as well as the quadratic ones, and 
other spectroscopic constants are quite satisfactory, what 
demonstrates a good potential of the "expanded local 
mode approach" (see Refs. 2, 5, and 18)  both for 
qualitative and  correct quantitative estimates of 
molecular properties and rovibrational spectra. 
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