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Dedicated to my friend and colleague Georgii Titov 
 

We discuss the treatment of radiative transfer through a two-component 

discrete stochastic mixture. A broken cloud field can be modeled as such a 

stochastic mixture, with the clouds and clear sky representing the two components.  

The integral equation approach of Titov for a Markovian mixture is shown to be 

equivalent to a differential model introduced in the kinetic theory literature.  

Simplifications and extensions of this model are also discussed.  The simplifications 

include a renormalized equation of transfer, as well as various diffusive models.  

The extensions involve more accurate descriptions utilizing additional radiative 

transfer equations, as well as allowance for non$Markovian mixing statistics. 
 

PREFACE 
 

This special issue of JAOO is dedicated to the 
memory of Georgii Titov, and prior to my technical 
paper I would like to make a few personal remarks.  I 
didn't know Georgii long, but I considered him a dear 
and special friend.  I first met Georgii in 1993 at the 
Third ARM Science Team Meeting in Norman, 
Oklahoma.  At that time, his command of English was 
somewhat limited, and Sasha Marshak kindly acted as a 
translator for us. In spite of the language difficulties, it 
was clear that Georgii and I shared a special bond, both 

scientifically and personally. We would often sneak out 
of the meeting to share a smoke, a bad habit we both 
had developed many years earlier.  Some time after this 
meeting, Georgii visited me for a few days in Los 
Angeles.  By this time, his English had improved 
substantially so that we could carry on spirited 
discussions concerning the treatment of radiative transfer 
through a broken cloud field. We also found time for 

social activities. At one point, we were discussing what 
to do for dinner that evening. Georgii said he would 
like to have a real American steak, and Georgii, I, and 
my friend Lucie Rodriguez went to a fine steak house. 
The three of us shared good steak, good wine, good 
conversation, and, of course, a good smoke. We also 

took Georgii to the floral gardens at the Huntington 

Library in Pasadena. This is a beautiful place, and 
Georgii seemed to find real peace and contentment on 
this Sunday afternoon. The third and last time I saw 
Georgii was in Alaska at the 1996 International 
Radiation Symposium.  We hugged each other, shared a 
smoke of course, and picked up our friendship as if no 
time had passed since our meeting in Los Angeles. 

Lucie and I had planned to meet Georgii and his 
family, together with Norm McCormick (a faculty 
member at the University of Washington) and his wife, 
in Seattle during the summer of 1998.  Unfortunately, 

Georgii's illness prevented this meeting and, sad to say, 
I never saw my dear friend again.  Upon hearing of 
Georgii's passing, Lucie and I returned to the gardens 
of the Huntington Library and help a private memorial 
to mark the loss of this special man.  We spread rose 
petals in front of the tea house, where the three of us 
had shared so much love and friendship.  Lucie wrote a 
beautiful poem in honor of Georgii, which we sent to 
Georgii's wife.  We also included photographs of 
Georgii, Lucie and I sharing happy times at the 
Huntington. 

Georgii, we will miss you.  We will miss the 
scientific contributions you would have continued to 
make, but more importantly we will miss you the 
person.  You were the best this world has to offer.  
Rest in peace, my dear friend.  The paper which 
follows is dedicated to you, your family, and my 
memories of you. 

 

1. INTRODUCTION 
 

Cloud-radiation interactions are an important 
ingredient in the determination of the global climate.  
An accurate treatment of these interactions is essential 
to our understanding of long term climate change.  A 
promising approach to this problem is to treat a broken 
cloud field as a two-component stochastic mixture, with 
the clouds and clear sky representing the two 
components.  Georgii Titov,1 together with researchers 
in the kinetic theory community, have successfully 
pursued this line of inquiry.  In this paper, we review 
the Titov and kinetic theory models, and show the 
equivalence of the Titov integral equation model to one 
of the differential kinetic theory models.  We also 
discuss simplifications and extensions of this model, 
including a renormalized equation of transfer, diffusive 
approximations, higher order models, and non-
Markovian mixing effects.  Because of space 



G.C. Pomraning Vol. 12,  No. 3 /March  1999/ Atmos. Oceanic Opt.  
 

205

limitations, our discussion is necessarily brief, but more 
detailed accounts are available in two recent review 
articles2,3 and the references therein. 

The radiative transfer equation we consider 
describes time-independent, monochromatic photon 
transport and is written 
 

Ω⋅∇I + σI = σs ⌡⌠
4π

 dΩ′ f(Ω⋅Ω′) I(Ω′) + S. (1) 

 

The dependent variable in Eq. (1) is the specific 
intensity of radiation I(r, Ω), with r and Ω denoting 
the spatial and angular (photon flight direction) 
variables, respectively.  The quantity σ(r) is the 
macroscopic total cross section (extinction coefficient), 
σs(r) is the macroscopic scattering cross section, 
f(Ω⋅Ω′) is the single scatter angular redistribution 
function normalized according to 
 

⌡⌠
4π

 dΩ f(Ω⋅Ω′) = 2π ⌡⌠
$1

1

 dξ f(ξ) = 1, (2) 

 
and S(r) denotes any emission source of photons.  
Under the assumption of local thermodynamic 
equilibrium for the matter, S = σa B, where B is the 
local Planck function, and σa = σ $ σs is the 
macroscopic absorption cross section corrected for 
induced emission.  We take the boundary condition on 
Eq. (1) to be 
 
I(rs, Ω) = Γ(rs, Ω),     n⋅Ω < 0, (3) 
 
where n is normal outward pointing unit vector at a 
surface point rs, and Γ is the specified boundary data.  
This boundary condition corresponds to specifying the 
radiation field incident upon each surface point of the 
system. 

To treat the case of a binary statistical mixture, 
the quantities σ, σs, f, and S in Eq. (1) are considered 
as discrete random variables, each of which assumes at 
any r one of two sets of values characteristic of the two 
components constituting the mixture, namely the clouds 
and the clear sky.  We denote these two sets by σi, σsi, 
fi, and Si with i = 0 and 1.  That is, as a photon 
traverses the broken cloud field along any path, it 
encounters alternating segments of clouds and clear 
sky, each of which has known deterministic values of σ, 
σs, f, and S.  The stochastic nature of the problem 
enters through the statistics of the cloud field, i.e., 
through the statistical knowledge as to whether a cloud 
or clear sky is present at point r.  Since σ, σs, f, and S 
in Eq. (1) are (two-state, discrete) random variables, 
the solution of Eq. (1) is also a (continuous) random 
variable, and we let <I> denote the ensemble-averaged 
intensity.  The primary goal in any statistical model of 
cloud-radiation interactions is to obtain a relatively 
simple and accurate set of equations for <I>.  It is also 
of interest to have a model for the higher moments of 

the stochastic radiation field, in particular the variance.  
We assume that the boundary data Γ in Eq. (3) is 
nonstochastic, i.e., it is the same for each physical 
realization of the statistics. 

The outline of the remainder of this paper is as 
follows.  In the next section, we describe the simplest 
of the kinetic theory models, based upon the 
assumption of Markovian mixing and the use of the 
Liouville master equation.  Section 3 describes the 
Titov model, and shows its equivalence to the kinetic 
theory model of Sec. 2.  Section 4 consists of two parts.  
We first discuss simplifications of the Titov model, 
including various diffusive approximations and a 
renormalized equation of transfer.  This renormalized 
equation is of the classic radiative transfer equation 
form, but contains effective material properties and an 
effective emission source to account for the stochasticity 
of the problem.  The second part of Sec. 4 makes 
reference to improved (but more complex) Markovian 
models, and discusses possible treatments of non-
Markovian statistics.  The final section is devoted to a 
few concluding remarks. 

 
2. THE LIOUVILLE MASTER EQUATION 

TREATMENT 

 
We assume that the statistics of the broken cloud 

field are Markovian, described entirely by the equation (4) 
 

Prob (i → j) = 
ds

λi(s)
 ,     j ≠ i, (4) 

 

where s is a spatial coordinate along the direction Ω, 
and Prob (i → j) is the differential probability that 
point s + ds is in component j, given that point s is in 
component i.  Here the two λi(s) are the prescribed 
Markovian transition lengths associated with the cloud 
field, and they completely describe the statistics of the 
clouds $ clear sky mixture.  The probabilities pi(s) of 
finding component i at position s are related to the 
λi(s) by the Chapman$Kolmogorov equations4 
 

dpi

ds
 = 

pj

λj
 $ 

pi

λi
 ,     j ≠ i. (5) 

 

The pi(s) have the simple interpretation of being the 
volume fractions of the two components of the mixture 
at position s.  For homogeneous (λi independent of s) 
statistics, they are related to the λi according to 
 

pi = 
λi

λ0 + λ1
 . (6) 

 

In this homogeneous case, λi has the interpretation of 
being the mean chord length in component i.  A 
quantity λc(s), which has the interpretation of a 
correlation length, is related to the λi(s) by4 
 

2
λc(s)

 = 
1

λ0(s) p1(s)
 + 

1
λ1(s) p0(s)

 , (7) 
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which, for homogeneous statistics, reduces to 
 

1
λc

 = 
1
λ0

 + 
1
λ1

 . (8) 

 

Finally, in the case of homogeneous statistics, the chord 
lengths in each component of the mixture are 
exponentially distributed with mean λi.4 

To incorporate this statistical description into the 
radiative transfer problem, we first consider a purely 
absorbing (σs = 0) system, in which case Eq. (1) 
reduces to 
 

dI(s)
ds

 + σ(s) I(s) = S(s). (9) 

 

Denoting the surface point rs by s = 0, the boundary 
condition on Eq. (9) as given in general by Eq. (3) 
becomes 
 

I(0) = Γ. (10) 
 

Vanderhaegen5 pointed out that the transport problem 
defined by Eqs. (9) and (10) can be treated exactly 
under the assumption of Markovian statistics as defined 
by Eq. (4).  He observed that Eqs. (9) and (10) 
describe an initial value problem, with the space 
coordinate s playing the role of time.  If the mixing is 
taken as Markovian, the stochastic transport problem is 
then a joint Markov process, and thus the Liouville 
master equation applies.  For the binary discrete 
statistics under consideration, this master equation is 
given by 
 

∂Pi

∂s
 $ 

∂

∂I
 [(σi I $ Si) Pi] = 

Pj

λj
 $ 

Pi

λi
 ,   j ≠ i. (11) 

 

Here Pi(I, s) is defined such that Pi dI is the 
probability of finding component i at position s, and 
having the stochastic solution lie between I and I + dI.  
The boundary conditions on Eq. (11) are 
 

Pi[I, 0] = pi(0) δ(I $ Γ), (12) 
 

which expresses the certainty of the solution at s = 0.  
The volume fraction pi(s) is related to Pi(I, s) 
according to 
 

pi(s) = ⌡⌠
0

∞

 dI Pi(I, s), (13) 

 

which follows from the definitions of pi(s) and 
Pi(I, s). 

If we define Ii(s) as the conditional ensemble 
average of I, conditioned upon position s being in 
component i, the definition of Pi(I, s) gives 
 

pi(s) Ii(s) = ⌡⌠
0

∞

 dI I Pi(I, s). (14) 

It then follows that 
 
<I(s)> = p0(s) I0(s) + p1(s) I1(s), (15) 
 
where <I(s)> is the overall, unconditional, ensemble 
average of the intensity.  Multiplication of Eq. (11) by 
I and integration over 0 ≤ I < ∞ yields, upon 
integrating by parts, 
 
d(pi Ii)

ds
 + σi pi Ii = pi Si + 

pj Ij

λj
 $ 

pi Ii

λi
 ,   j ≠ i. (16) 

 
These two coupled equations for I0 and I1 are subject 
to the boundary conditions 
 
I0(0) = I1(0) = Γ. (17) 
 
Equations (15) through (17) give a complete and exact 
description for <I(s)> for the purely absorbing, binary 
Markovian mixture under consideration.  Similar results 
can be obtained for higher stochastic moments of the 
intensity, such as the variance.6 

Although the Liouville master equation is not 
strictly valid as a treatment of stochastic radiative 
transfer in a Markovian mixture when scattering is 
present, it has been suggested7 that the use of this 
master equation, while not rigorous, might produce a 
useful and simple, albeit approximate, model of particle 
transport in Markovian stochastic mixtures.  If Eq. (1) 
is the underlying equation of transfer, this model arises 
from treating the integral scattering term in Eq. (1) on 
the same basis as the emission source S.  This leads to 
the two equations 
 
Ω⋅∇(pi Ii) + σi pi Ii = 

= pi Si + σsi ⌡⌠
4π

 dΩ′ fi(Ω⋅Ω′) pi Ii(Ω′) + 
pj Ij

λj
 $ 

pi Ii

λi
 , 

j ≠ i, (18) 
 
with <I(r, Ω)> given by 
 
<I(r, Ω)> = p0(r) I0(r, Ω) + p1(r) I1(r, Ω). (19) 
 

Several other derivations of the approximate model 
given by Eqs. (18) and (19) have been given.  One is 
based upon stochastic balance methods, introducing an 
approximate closure to relate an interface ensemble 
average to the Ii.8  Sahni has given two alternate 
derivations, based upon utilizing ideas from nuclear 
reactor noise analysis,9 and invoking the approximation 
that each photon track is independent of prior track.10  
Lastly, there is the approach of Titov,1 which we 
consider in the next section. 
 

3. THE TITOV TREATMENT 
 

Titov1 presented an integral equation formalism 
for the stochastic transport problem under 
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consideration, in the special case of negligible emission 
(S = 0) and a completely transparent clear sky 
(σ0 = σs0 = 0).  Here we have let i = 0 denote the clear 
sky and i = 1 denote the clouds.  The Titov model is 
given by 
 

<I(s)> + ⌡⌠
0

s

 ds′ C1 p1(s′) I1(s′) = Γ, (20) 

 

p1(s) I1(s) + ⌡⌠
0

s

 ds′ P11(s′, s) C1 p1(s′) I1(s′) = p1 Γ, (21) 

 

where s is the spatial coordinate along the direction Ω 
(so that Ω⋅∇ = d/ds), and C1 is the collision operator 
defined by 
 

C1(p1 I1) = σ1 p1 I1 $ σs1 ⌡⌠
4π

 dΩ′ f1(Ω⋅Ω′) p1 I1(Ω′). (22) 

 

Titov obtained Eqs. (20) and (21) under a Markovian 
assumption for both the mixing and the transport 
process.  The surface of the system is taken as s = 0, 
and Γ denotes the incoming intensity at this point.  
The quantity Pij(s′, s) occurring in Eq. (21) with 
i = j = 1 is defined as the conditional probability that 
position s is in mixture component j, given that 
position s′ is in component i.  For Markovian 
statistics, the Pij(s′, s) satisfy the Chapman$
Kolmogorov equations given by4 
 
∂Pii

∂s
 = 

Pij

λj
 $ 

Pii

λi
 ,    

∂Pij

∂s
 = 

Pii

λi
 $ 

Pij

λj
 ,    j ≠ i, (23) 

 
with boundary conditions 
 
Pii(s′, s′) = 1;   Pij(s′, s′) = 0,   j ≠ i. (24) 
 

It is clear from their definition that the Pij(s′, s) satisfy 
 
Pii + Pij = 1,   j ≠ i. (25) 
 

We now cast the integral Titov model given by 
Eqs. (20) and (21) into an equivalent differential 
form, and show that this differential form is identical 
to Eqs. (17) and (18) (in the case that 
Si = σ0 = σs0 = 0), the kinetic theory model discussed 
in the last section.  We first subtract Eq. (21) from 
Eq. (20) and make use of Eq. (19) to obtain 
 

p0(s) I0(s) + ⌡⌠
0

s

 ds′ P10(s′, s) C1 p1(s′) I1(s′) = p0(s) Γ, 

(26) 
 
where we have used p0 + p1 = P10 + P11 = 1.  

Differentiating Eqs. (20) and (21), making use of 
Eq. (24), given 
 

d<(s)>

ds
 + C1 p1(s) I1(s) = 0, (27) 

 

d[p1(s) I1(s)]

ds
 + C1 p1(s) I1(s) + 

+ ⌡⌠
0

s

 ds′ 
∂P11(s′, s)

∂s
 C1 p1(s′) I1(s′) = 

dp1(s)

ds
 Γ. (28) 

 

We now use the first equation in Eq. (23) with i = 1 
and j = 0 to rewrite Eq. (28) as  
 
d[p1(s) I1(s)]

ds
 + C1 p1(s) I1(s) $ 

$ 
1

λ1(s)
 ⌡⌠

0

s

 ds′ P11(s′, s) C1 p1(s′) I1(s′) + 

+ 
1

λ0(s)
 ⌡⌠
0

s

 ds′ P10(s′, s) C1 p1(s′) I1(s′) = 

dp1(s)

ds
 Γ. (29) 

 
Equations (21) and (26) can be used to eliminate the 
integral terms in Eq. (29), resulting in  
 
d[p1(s) I1(s)]

ds
 + C1 p1(s) I1(s) = 

p0(s)

λ0(s)
 I0(s) $ 

$ 
p1(s)

λ1(s)
 I1(s) + ⎣

⎡
⎦
⎤ 

dp1(s)

ds
 + 

p1(s)

λ1(s)
 $ 

p0(s)

λ0(s)
  Γ. (30) 

 
Making use of Eq. (15) with i = 1 and j = 0, Eq. (30) 
simplifies to 
 
d[p1(s) I1(s)]

ds
 + C1 p1(s) I1(s) = 

= 
p0(s)

λ0(s)
 I0(s) $ 

p1(s)

λ1(s)
 I1(s). (31) 

 
Finally, subtracting Eq. (31) from Eq. (27) yields 
 

d[p0(s) I0(s)]

ds
 = 

p1(s)

λ1(s)
 I1(s) $ 

p0(s)

λ0(s)
 I0(s). (32) 

 
Equations (31) and (32) are the final result of our 
algebraic manipulations, and are entirely equivalent in 
content to the integral equations of Titov given by 
Eqs. (20) and (21), once they are supplemented with 
the identity 
 
<I(s)> = p0(s) I0(s) + p1(s) I1(s), (33) 
 
and the initial conditions 
 

I0(0) = I1(0) = Γ. (34) 
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Using d/ds = Ω⋅∇ and the definition of C1 as given by 
Eq. (22) in Eqs. (31) and (32), it is clear that the 
Titov model is identical to the Markovian kinetic 
theory model given by Eq. (18), recognizing that Titov 
considered the special case Si = σ0 = σs0 = 0 (no 
emission and a transparent clear sky). 

 

4. SIMPLIFICATIONS AND EXTENSIONS 

 

The approximate model given by Eq. (18) can be 
simplified by introducing further approximations.  Most 
of the work reported in the literature in this regard is 
restricted to isotropic statistics [λi ≠ λi(Ω)] and 
isotropic scattering (4πfi = 1).  For isotropic scattering, 
Eq. (18) reduced to 
 

Ω⋅∇(pi I1) + σi pi Ii = pi Si + 
σsi

4π
 ⌡⌠
4π

 dΩ′ pi Ii(Ω′) + 

+ 
pj Ij

λj
 $ 

pi Ii

λi
 ,   j ≠ i. (35) 

 

If it assumed in Eq. (35) that one or both of the λi are 
small (so that λc is small), simple asymptotic analysis11 
gives the expected result, referred to as the atomic mix 
limit, 
 

Ω⋅∇ <I> + <σ> <I> = <S> + 
<σs>

4π
 ⌡⌠
4π

 dΩ′ <I(Ω′)>, (36) 

 

where 
 

<σ> = p0 σ0 + p1 σ1 , (37) 
 
with similar expressions for <σs> and <S>.  A second 
asymptotic limit which has been examined11 
corresponds to a small amount of large cross section 
material admixed with a large amount of small cross 
section material.  In this case, one finds a renormalized 
equation of transfer given by 
 

Ω⋅∇ <I> + σeff <I> = Seff + 
σs,eff 

4π
 ⌡⌠
4π

 dΩ′ <I(Ω′)>, (38) 

 

where Seff, σeff, and σs,eff represent an effective source 
and effective cross sections which approximately 
account for the stochasticity of the problem.  These 
effective quantities are explicit algebraic expressions in 
terms of the Si, σi, σsi, and λi which, in the interest of 
conserving space, we shall not give here.  We do point 
out, however, that all three of these effective quantities 
are always nonnegative, even far from the asymptotic 
limit under consideration, indicating the robustness of 
this asymptotic treatment. 

Several papers are available describing still 
another asymptotic limit, that reduces Eq. (35) to a 
diffusive description of stochastic radiative transfer.  
The first of these11 scales σai = σi $ σsi and Si in 

Eq. (35) as O( 2), where  is a formal smallness 
parameter, and scales the gradient term as O( ).  The 
λi are unscaled, and hence taken as O(1).  One 
obtains two coupled diffusion equations for the 
energy densities Ei (the angular integral of Ii divided 
by the speed of light).  Subsequent work12 
generalized this analysis to include various scalings of 
the λi.  Depending upon the assumed scaling, one 
obtains either two coupled diffusion equations for the 
Ei, or a single diffusion equation for E , the 
ensemble-averaged energy density.  In a further 
generalization,13 asymptotic diffusive descriptions 
have been obtained in the presence of anisotropic 
statistics, and independent scalings for the two λi. 

Other diffusive descriptions corresponding to 
Eq. (35) have been reported.  These are the P1 and 
P2 spherical harmonic approximations,14 a diffusion 
description based upon the Case discrete modes of 
transport theory,14 and flux-limited diffusion 
theories.15,16  Flux-limiting means that the diffusion 
coefficient in Fick's law of diffusion is nonlinear, in 
just such a way that the magnitude of the radiative 
flux can never exceed the product of the radiation 
energy density and the speed of light, no matter how 
steep the spatial gradients. 

All of the above discussion deals with 
simplifications that have been suggested, taking 
Eq. (18) or its isotropic scattering version Eq. (35), 
which in themselves are approximate, as the underlying 
transport model.  Several models, which are more 
accurate but more complex than Eqs. (18) and (35), 
have also been suggested for treating this Markovian 
stochastic transport problem.  They are all based upon 
the exact stochastic balance equation given by, for 
isotropic scattering,8 
 

Ω⋅∇(pi Ii) + σi pi Ii = pi Si + 
σsi

4π
 ⌡⌠
4π

 dΩ′ pi Ii(Ω′) + 

+ 
pj 

$
Ij

λj
 $ 

pi 
$
Ii

λi
 ,   j ≠ i. (39) 

 
These two equations (for i = 0 and i = 1) are not 
closed in that they contain four unknowns, namely 

the Ii as previously defined and the 
$
Ii, defined as the 

ensemble average of the specific intensity conditioned 
upon the position r lying at an interface between 
materials, with material i to the left (the vector Ω 
points from left to right).  Thus a closure is needed 
to make Eq. (39) useful.  The simplest suggested 
closure8 is to use 
 

$
Ii = Ii. (40) 
 
With this (approximate) closure, Eq. (39) becomes 
identical to the master equation model given by 
Eq. (35).  We note that this closure is exact for 
purely absorbing (σsi = 0) Markovian problems. 
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To improve upon the accuracy of Eq. (35), several 
other closures have been suggested.  Two of these are 
algebraic, in which Eq. (40) is replaced17,18 
 
$
Ii = αIi, (41) 
 
or 
 
$
Ii = βIi + γEi, (42) 
 
with relatively simple and explicit expressions given for 
α, β, and γ.  The qualitative difference between these 
two closures is that Eq. (42) mixes the various 
directions, through the energy density term Ei, with no 
such mixing present in Eq. (41).  For purely absorbing 
problems (σsi = 0), one has α = β = 1 and γ = 0, thus 
assuring that both closures reduce to Eq. (40) for this 
class problems, and hence are exact closures in this 
case.  Two additional closures have been suggested, 
which involve additional equations of transfer for the 

$
Ii

 .19,20  Thus these two models involve four coupled 
equations of transfer for the four unknowns I0, I1, 

$
I0, 

and 
$
I1.  As such, these models are quite complex, but 

they are also the most accurate.  Space limitations 
prohibits any detailed discussion of these models.  We 
only point out that both are exact for purely absorbing 
(σsi = 0) problems. 

We close this section by briefly discussing 
problems involving non-Markovian mixing statistics.  
All of the models of stochastic transport discussed thus 
far in this paper have assumed that the statistics of the 
mixing is described by a Markov process.  As pointed 
out in Sec. 2, homogeneous Markovian statistics 
correspond to exponentially distributed cloud sizes and 
intercloud spacings.  If more realistic, non-Markovian, 
distributions are available, one can use renewal theory 
to obtain an exact description for the purely absorbing 
problem.4,21,22  This analysis uses the integral, rather 
than the differential, equation of transfer as the 
underlying description of the transport process.  The 
renewal theory description consists of four coupled 
integral equations, whose solution yields <I>, the 
ensemble-averaged intensity.  It can be shown22 that for 
Markovian statistics these four integral equations are 
equivalent to the two differential equations given by 
Eq. (16).  If the scattering interaction is present, an 
approximate model for non-Markovian statistics can be 
constructed by treating the integral scattering term on 
the same basis as the emission source S in the renewal 
equations.  This is the same philosophy as was used to 
incorporate scattering into the purely absorbing 
Liouville master equation result, Eq. (16), which led to 
Eq. (18) as a Markovian model with scattering. 

A second approach to dealing with non-Markovian 
mixing statistics in stochastic transport analysis has 
also been proposed.23  This model uses the Markovian 
model given by Eq (18) as the relevant equations, but 
replaces the Markov transition length λi in Eq. (18) 
with an effective quantity λi,eff given by 

λi,eff = q λi. (43) 
 

The factor q, which is independent of the index i, and 
which lies in the range 0 < q ≤ 1 with q = 1 
corresponding to Markovian statistics, was determined 
by solving the renewal equations in the purely 
absorbing case.  It was found that with a certain choice 
for q, Eq. (18), with σsi = 0 and λi replaced by qλi, 
preserves both the correct photon mean free path and 
the deep-in solution.  This model for non-Markovian 
statistics is particularly appealing in that it retains the 
simplicity of two coupled equations of transfer in the 
form given by Eq. (18), in contrast to the more 
complex four coupled integral equations of renewal 
theory. 
 

5. CONCLUDING REMARKS 
 

In this paper we have briefly reviewed various 
kinetic theory models describing particle transport and 
radiative transfer through a two-state, discrete, 
stochastic mixture.  These models provide one way of 
approaching the cloud-radiation interaction problem, by 
treating the clouds and clear sky as the two components 
of a stochastic mixture.  We have shown in detail that 
the Titov integral equation model for describing 
radiative transfer through a broken cloud field is 
equivalent to one of the differential kinetic theory 
models.  Georgii Titov will no longer be contributing 
to this scientific literature, but his prior contributions 
and the man himself will long be remembered.  We will 
all miss Georgii, and the special warmth that was so 
much a part of him. 
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