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An optical model of a particle is developed as applied to bistatic laser sensing of crystal clouds. A 
round water ice plate is considered as a scatterer. Within the framework of physical optics, the equations 
are derived for  cross sections of scattering into the backward scattering  hemisphere taking into account 
polarization state of incident radiation. 

 

Introduction 
 

At present lidar sensing methods are being widely 
used in the studies of crystal clouds. As a rule, as a 
linearly polarized optical radiation interacts with 
nonspherical particles, the cross-polarized component 
appears in the reflected signal. So, the use of 
polarization lidars along with non-polarization ones 
yields more informative results. 

The polarization state of scattered radiation can 
differ from that of the incident radiation due to 
variations in microphysical, optical, and orientation 
properties of the scatterers. As known, water ice 
crystals in clouds are characterized by a wide variety of 
habits and size. Up to now, because of difficulties in 
numerical simulation of the process of light scattering 
by oriented particles, only some particular models have 
been developed which represent only that or another 
optical phenomenon observed in crystal clouds. The 
domain of their applicability is mostly limited to only 
few problems. 

Remote sensing with a bistatic polarization 
scanning lidar shows good promises for studying the 
upper and middle atmosphere. Researchers note great 
advantages of this method over the traditional 
monostatic one.1,2 

It should be noted that, in spite of the advent of 
bistatic lidars, there are no satisfactory theoretical 
grounds developed for interpreting the data of sensing 
crystal clouds. So the theories applied to monostatic 
laser sensing are mainly used for this purpose. 

This paper describes a numerical model of a 
scatterer as an oriented plate crystal as applied to the 
bistatic sensing scheme. 

 

Experimental optical arrangement  
of a bistatic sensing 

 

Let us imagine the optical arrangement of bistatic 
polarization laser sensing of crystal clouds to be as 
follows. Let a source of radiation be at the point n 1, 
the receiver be at the point n 2, and the object under 
study be at the point n 3. First let us set the absolute 

coordinate system n .3z, and then introduce three 
coordinate systems more: n 1.131z1, n 2.232z2, and 
n 3.333z3 in this absolute system. These three 
coordinate systems are related to the source, receiver, 
and scatterer, respectively. The coordinate plane n .3 is 
parallel to the ground, and the normal to it is directed 
along the Oz axis. The sensing radiation propagates 
along the positive direction of the O1z1 axis. Electric 
components of the incident plane wave having the 
elliptical polarization (E1, E2) are directed along the 
O1x1 and O1y1 axes. The coordinate plane n 3.333 is a 
plane of the preferred orientation of particles in the 
ensemble, and the O3z3 axis is normal to it. The 
scattered radiation is received along the direction of the 
O2z2 axis, and the O2y2 axis is parallel to the 
horizontal plane. 

To further define the normalized characteristics of 
light scattering, it is sufficient to define the angular 
position of the unit vectors corresponding to the 
components of the scattered field. Therefore, at this 
stage, set the origins of all the four coordinate systems 
at the same point n  and define the angular dependence 
of the unit vectors (x, y, z) of the absolute coordinate 
system with respect to the corresponding unit vectors 
(xi, yi, zi) of each of the rest three systems. Then the 
following equation is valid: 
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The angles ϑi and ϕi obviously determine the 
position of the basis vectors xi, yi, zi (i = 1, 2, 3) of 
each of the three corresponding coordinate systems 
n .i3izi (i = 1, 2, 3) relative to the absolute coordinate 
system n .3z. 
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Statement of the problem 
 

As known, plate crystals of water ice in the 
atmosphere have, as a rule, a hexagonal shape. When 
considering a system of oriented hexagonal plates, it is 
needed to average the light scattering characteristics of 
an individual particle over a set of orientations 
determined by rotation of a plate around its axis. It is 
clear that averaging significantly smooths out 
peculiarities due to the fine geometrical features in the 
scattering characteristics. Therefore, because calculation 
of the characteristics of light scattering by a single 
crystal is followed by transition to integral characteristics 
of a polydisperse medium, it is worth simplifying first 
the geometry of a particle. In this connection, the 
round plate is the best geometrical approximation of an 

individual particle of a polydisperse ensemble consisting 
of plate crystals.3 

Let us consider a disc-shaped particle with the 
complex refractive index ~n n i= + χ , radius =, and 
thickness d (see Fig. 1) as an object when studying 
light scattering by a single crystal. 

 
Fig. 1. Geometry of formation of refracted beams. 

 

According to the laws of crystal growth, the 
following dependence between the diameter and 
thickness of a plate is valid4: d = L(2a)μ, where 
L = 2.020 and μ = 0.449. Let a plane polarized wave 
(E1, E2) be incident on a particle at an angle β to the 
normal to the plate base. The angle γ sets orientation of 
the polarization plane relative to the incidence plane. 
The rays reflected from the plate base or coming out of 
it after several internal reflections form the beams in 
the direction π $ β relative to the normal. The major 
part of the  energy of the field scattered in the 
backward hemisphere is obviously concentrated about 
the direction of specular reflection. When talking about 
the space containing scattered power, we shall call as 
the backward hemisphere the part of the sphere, which 
is bounded by the plate base and contains the incident 
and reflected rays. Note that the area of the side surface 

of a plate is much less than the area of the projection 
of the base in the direction of reflection. Besides, as the 
wave interacts with the side surface of a scatterer, the 

major part of energy of the electromagnetic field is 
concentrated within the forward hemisphere. It should 
also be  noted that according to the earlier reported 
calculations,3,5 the internal reflections can be neglected 
when estimating the radiation scattered into the 
backward hemisphere. 

For thus described particle, let us now determine 
the light scattering characteristics which are important 
for the bistatic laser sensing. Namely, for the case of an 
arbitrary direction from which a polarized signal in the 
backward hemisphere is received, consider the set of 
scattering cross sections σπi, each proportional to the 

corresponding Stokes vector Iπi, that is, 

 σ ω
π πi i

I=  (I = 1, 2, 3, 4).  (2) 

Note that the whole set of cross sections can be 
considered as the scattering cross sections for the 
polarized signal, only keeping in mind that in the 
classical understanding of this term only one of them, 
σπi , has this meaning. We omit here the detailed 

presentation of the coefficient of proportionality ω, 
because for all four equations (2) it is the same. 
Besides, the light scattering characteristics considered 
below do not depend on it. In derivation of the sought 
equations for σπi 

, we use the following scheme. First, 

we determine the radiation field reflected in the 
direction π $ β (see Fig. 1) and then the components of 
the field scattered in the direction of reception. The 
next step is calculation of the Stokes vector parameters 
from the complex amplitude of this field followed by 
reduction of the Stokes vector parameters to the 
scattering cross sections. 

 

Scattered field  
in the backward hemisphere 

 

Let us set the electric and magnetic components of 
the field of an incident plane wave and  the direction of 
its propagation in the coordinate system n .131z1: 
E = x1 E1 + y2 E2, H = x1H2 + y1H1, k = k z1, k is the 
wave vector, H1 = E1/z1, H2 = E2/z1, where z1 is the 
resistance of the free space. Because the complex 
amplitudes (H1, H2) and (E1, E2) of the magnetic and 
electric components of the incident field are related to 
each other, equations for the magnetic components are 
omitted in this paper. 

Determine the position of the components of the 
incident (E1, E2) field in the system of coordinates 
related to the scatterer. The unit vectors of the 
coordinate system n .131z1 and n .333z3 given by 
Eq. (1) can be presented by the following linear 
transformation: 

 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞x3

y3

z3

 = A 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞x1

y1

z1

 ,  (3) 



O.V. Shefer Vol. 12,  No. 7 /July  1999/ Atmos. Oceanic Opt.  
 

 

551

 

where 

 A = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞cosα cosβ cosγ $ sinα sinγ     $cosα cosβ sinγ $ sinα cosγ     cosα sinβ

sinα cosβ cosγ + cosα sinγ     $sinα cosβ sinγ + cosα cosγ     sinα sinβ

$sinβ cosγ     sinβ sinγ     cosβ

 ; (3) 

 

α, β, and γ are Euler angles. Based on relations (1) and 
(3) for the coordinate systems defined above, the 
matrix ` can be written as A S S=

−

3
1

1 . Then Euler 

angles can be calculated as some combinations of the 
angles ϑ1, ϕ1 and ϑ3, ϕ3. Introduce one more matrix 
B S S=

−

3
1

2 , which establishes the following relation: 
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The matrices ` and b  will allow us to obtain, in 
the below discussion, the components of  scattered field 
in the coordinate system related to the plate. 

Elements of the matrix A determine the positions 
of the vectors k, E1, and E2 in the coordinate system 
n .333z3. It should be noted that at an arbitrary angle 
of orientation of the plane of polarization γ the 
components E1 or E2 do not lie in the plane of wave 
incidence. Therefore, for further calculations of the 
scattering characteristics and application of Fresnel 
formulas to them, the components E1 and E2 should be 
transformed so that one of them is normal to the plane 
of incidence, while the other one being in this plane. 
To do this, let us use the following linear 
transformation: 
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The vectors E⊥ and E| | in the coordinate system 

related to the plate depend on the elements of the first 
and second columns of the matrix AF = A F. 

Upon reflection from the plate, the amplitudes of 
the components of the electric field can be found as  

E
R
⊥
 = E⊥ R⊥ and ER

| |  = E| | R| |. Here R⊥, R| | are Fresnel 

reflection coefficients having the following form: 
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Let kR be the direction of propagation of the 

reflected beam. The position of each of the vectors ER
| | , 

E
R
⊥
, and kR in the coordinate system related to the 

plate is determined by the elements of the 
corresponding columns of the matrix AR: 

 AR = AF R, 
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Now determine the angles defining the position of 

z2 relative to the vectors ER
| | , E

R
⊥
, and kR. If Bij and 

ARij
 are the matrix elements described by Eqs. (4) and 

(6), then the projection of the vector z2 onto the 
corresponding directions is determined as 

cosψx R R RA B A B A B= + +
11 21 3113 23 33 , 

cosψy R R RA B A B A B= + +
12 22 3213 23 33 , 

cosψ z R R RA B A B A B= + +
13 23 3313 23 33 , 

cos sin cosψ ϑ ϕ
x
= , 

cos sin sinψ ϑ ϕy = , 

cos cosψ ϑ
z
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Since cos cosϑ ψ=
x

 and sin cosϑ ϑ= −1 2 , 

cos cos / sinϕ ψ ϑ=
x

 and sin cos / sinϕ ψ ϑ= y . The 

angles ϑ and ϕ are counted from the direction π $ β. 
Let us introduce a new coordinate system n.s3szs 
related to n.333z3: 

 AT = AR S P,  (7) 
where 
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The electric components of a scattered field are 
determined by the elements of the first and second 
columns of the matrix AT given by Eq. (7). Moreover, 
ER1

 and ER2
 lie in the plane normal to the given 

direction of reception Oz2. 
For the amplitudes of the scattered electric field 

we have 
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J1 is the Bessel function of the first order; k = 2π/λ is 
the wave number, λ is the wavelength. The parameters 
EI and EII are the components of the field recorded 
with a receiver. Find now the linear transformation 
which relates (ER1

, ER2
) to (EI, EII). In other words, 

the unit vectors ER1
 and ER2

 should be rotated around 

z2 until full coincidence with EI and EII. Here ARij
 are 

the elements of the matrix (7): 

 cos u A B A B A BT T T= + +
12 22 3212 22 32 , 

 sin u A B A B A BT T T= + +
11 21 3112 22 32 . 

Then we have 

 E u E u ER RI = − +cos sin
1 2
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 E u E u ER RII = +sin cos
1 2

,  (9) 

taking into account that 

 E A a E a EDI = +( )11 1 12 2 , 
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 a R u R u11 = + ⊥cos cos sin sinγ γ , 

 a R u R u12 = − + ⊥|| cos sin sin cosγ γ , 

 a R u R u21 = − + ⊥|| sin cos cos sinγ γ , 

 a R u R u22 = + ⊥|| sin sin cos cosγ γ . 

 

Scattering cross sections 
 
The scattering cross sections σ

πj
 determined in the 

direction of radiation reception are related to the 
corresponding parameters of Stokes vector I

πj
 as 

follows: 

 σ
πj

 = 4πr2 Iπj/I1,   j = 1, 2, 3, 4,  (10) 

where I1 is the intensity of electromagnetic field of the 
incident wave. The parameters of Stokes vector can be 
expressed in terms of the amplitudes of the incident 
field 
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The equations for determination of the Stokes 
vector parameters of the scattered radiation are 
obviously the same. Taking into account Eqs. (8)$(11) 
and making necessary algebraic operations, we derive 
the following equations for the scattering cross sections: 
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where Mij are the elements of Mueller matrix. 
If we denote 

 
R R

f
||

2 2

1
2

+
=

⊥

, 
R R

f
||

2 2

2
2

−

=

⊥

; 

 Re( )*R R g|| ⊥ = 1 ; Im( )*R R g|| ⊥ = 2 ; 

sin 2 1γ = s , sin 2 2y s= ; cos 2 1γ = c , cos 2 2y c= , 

then 

M f M f c M f s M11 1 12 2 1 13 2 1 14 0= = = − =, , , ,  

M f c M f c c g s s21 2 2 22 1 1 2 1 1 2= = +, , 

M g s M f s c g c s24 2 2 23 1 1 2 1 1 2= − = − +, , 

M f s M f c s g s c31 2 2 32 1 1 2 1 1 2= − = − +, ,  (13) 

M g c M f s s g c c34 2 2 33 1 1 2 1 1 2= − = +, ,  

M g M g c M g s M44 1 43 2 1 42 2 1 41 0= = = =, , , . 

 

Specular reflection 
 

Consider a particular case where the direction of 
reflection coincides with the direction of reception. To 
simulate this situation with the known position of the 
source and receiver, we may determine the angles ϑ3 
and ϕ3 which characterize the position of a plate in the 
space relative to the absolute coordinate system, 
provided that ϑ = 0. Having set the pairs of angles 
(ϑ1, ϕ1) and (ϑ2, ϕ2), determine the values of ϑ3 and 
ϕ3 corresponding to the case of specular reflection. 

Since the matrix AR given by Eq. (6) determines 
the directions of reflection and of the electric 
components of the reflected field, and the elements of 
the third column of the matrix B given by Eq. (4) 
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determine the direction, relative to the plate, of 
radiation coming to the receiver, we have the following 
system (taking into account the conditions of specular 
reflection): 

 A B A B A BR R R11 21 3113 23 33 0+ + = ,  

 A B A B A BR R R12 22 3213 23 33 1+ + = .   (14) 

Recall that the elements of the matrices AR and B 
depend on the angles ϑi and ϕi (i = 1, 2, 3). Then, upon 
solution of the system (14), we have 

 tg
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Note that the components of the scattered field 
ER1

 and ER2
 in the case of reception of specularly 

reflected radiation are in the same plane as those 
normal to the direction of reflection (reception). 

As known, for non-spherical particles all 16 
elements of Mueller matrix may be nonzero. Analyzing 
Eqs. (12) for the scattering cross sections, it is clear 
that in the case of specular reflection two elements of 
16 are zero (as in the case of arbitrary directions of 
incidence and scattering). In the case of monostatic 
sensing, and specular reflection from plates, only 
diagonal elements of the matrix are nonzero; besides, 
their absolute values are equal to each other.3 Then it 
becomes clear that the scattering phase matrix we have 
in bistatic sensing bears more information on the 
properties of oriented plates as compared with the 
monostatic sensing. 

 

Conclusion 
 
To identify a disperse medium and determine its 

basic parameters from the data of bistatic polarization 
laser sensing of crystal clouds, the numerical model of 

a scatterer is developed. A water ice particle having the 
shape of a round plate is taken as an object for the 
study. Within the framework of the physical optics, the 
equations have been derived for polarization 
characteristics and scattering cross sections of radiation 
in the backward hemisphere. The equations are some 
combinations of the elements of the scattering phase 
matrix. The equations obtained allow the above-
mentioned scattering characteristics to be studied 
numerically depending on the particle size, orientation, 
and the refractive index for arbitrary scattering angles 
in the optical wavelength region. 

The equations obtained for the elements of 
scattering phase matrix illustrate the change in the 
state of polarization of specularly reflected radiation at 
varying optical and orientation properties of a particle. 
In this connection, one should expect that the 
specularly reflected signal bears more information if the 
bistatic sensing scheme is used along with the 
parameters of anomalous backscattering recorded in a 
monostatic sensing  optical arrangement. 
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