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An efficient algorithm for control over a phase-front corrector based on electrooptical crystals has 

been developed with the use of the method of piecewise linear approximation. The accuracy 
characteristics of the algorithm are analyzed for the cases assuming the presence of Poisson and Gaussian 
noise in control channels. The analytical equations are derived for the variance of error and for the 
correlation coefficients of results of phase front reconstruction, as well as the estimate of computational 
expenses. 

 

1. Introduction 
 

Turbulence of the medium of propagation 
significantly deteriorates the performance characteristics 
of the current optical range finding systems. Phase 
conjugation systems efficiently compensating for 
distortions of light beams propagating through 
perturbed channels are being currently developed.1,2 
Such adaptive optical systems usually use deformable 
mirrors as the executive optical elements. Although 
having some advantages, phase-front correctors possess 
some disadvantages. First, they can hardly give the 
response function of a preset form. Second, they, being 
mechanical systems, have such properties as hysteresis 
and phase delay of a response. One of the promising 
ways of the development of adaptive optical systems is 
presentation of the phase front as a sum of spatial 
modes. 

The possibility of using electrooptical LiNbO3 
crystals as a phase-front corrector has been studied in 
Ref. 3. Upon propagation along the z axis through the 
system of two crystals, one turned by 90 0 relative to 
this axis, the optical radiation acquires the total phase 
shift 

 ϕ(x, y) = 
1
2 l0 n

3
0 r33 ⎩

⎨
⎧

⎭
⎬
⎫

2 $ 
E
l0

 [ ]l(x) $ l(y) ,  (1) 

where l0 is the optical radiation path length in the 
crystal; n0 is the refractive index of the crystal; E is 
the electric field strength between the electrodes; r33 is 
the electrooptical coefficient of the crystal; l(x) and 
l(y) are the functions describing the shape of electrodes 
in the planes yox and yoz, respectively. 

To realize the phase-front corrector capable of 
compensating for non-stationary distortions of an 
arbitrary form, one should arrange sequentially Nx 
correctors producing the correction of the form li(x) 
and Ny correctors producing the correction of the form 

lj(y), i = 1, Nx ; j = 1, Ny . The sum response of the 

corrector can be presented as 

 G(x, y) = ∑
i = 1

Nx

cili(x) + ∑
j = 1

Ny

dj lj(y),  (2) 

where ci and dj are the weighting coefficients, which 
are proportional to the control voltage across the 
corrector's electrodes. 

The shape of the control electrode should change 
with the crystal width. Therefore, the width of the 
entrance window of the crystal should far exceed its 
height. This requirement leads to necessary contraction 
of the optical beam in the corresponding planes. Thus, 
one element of the LiNbO3-based phase-front corrector 
should be a "cylindrical lens $ crystal $ cylindrical 
lens" system. 

 
Fig. 1. Structure scheme of an adaptive optical system with 
the LiNbO3-based phase-front corrector: objective lens (1), 
beam-splitter (2), corrector c1x (3), corrector c2x

2 (4), 
corrector d1y (5), corrector d2y

2 (6), focusing lens (7), 
photodetector (8), phase-front sensor (9). 
 

Figure 1 shows the structure of a hypothetical 
adaptive optical system, in which the phase front is 
corrected with the electrooptical correctors, which 
allow presentation of the optical wave front as a set of 
preset spatial modes. To organize control in such a 
phase conjugation system, one should calculate the 
parameters proportional, in the general case, to the 
coefficients ci and dj. This problem can be solved based 
on the method of piecewise linear approximation of the 
phase front. This method was first described in  
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Ref. 4. The efficiency of the obtained algorithm is 
rather important problem in this case. 

Thus, the aim of this paper is to synthesize the 
algorithm for reconstruction of the phase front in a 
hypothetical adaptive optical system with the LiNbO3-
based phase-front corrector and evaluation of its 
efficiency. 

When estimating the noise error, one should take 
into account the fact that there is a weak signal in 
every channel of the Hartmann sensor, because the 
total intensity of optical radiation incident on one 
quadrant photodetector of the Hartmann sensor is equal 

to I/M2, where M2 is the number of subapertures. 
Thus, the signal at the output of each quadrant 
photodetector must be described by the Poisson 
distribution density, therefore the efficiency should be 
analyzed starting from the Poisson model of noise at 
recording. 

 

2. Calculation of control actions 
 

Let us consider the problem in the following 
formulation. Phase distortions of the optical radiation 
are compensated for by the LiNbO3-based phase-front 
corrector. To calculate the function of control actions, 
we use the method of piecewise linear approximation of 
the measurement results on the phase front local tilts. 

Let we have a square-shaped aperture consisting of 
M×M identical subapertures, in the center of which the 
phase front local tilts of the form 

 Ui,j = k$1 
∂Ψ(xi 

yj)

∂x  ;   Vi,j = k$1 
∂Ψ(xi 

yj)

∂y    (3) 

are measured. In Eq. (3) k is the wave number, and Ψ 
is the function describing the phase distortion. 

Consider the jth (j = 1, M ) y cross section of 

the phase front. In the general case, the cross section of 

the phase front is a random function of the coordinate 

xi (i = 1, M ). Divide the cross section of the phase 

front into M intervals, within each the phase front is 

approximated by a segment of a straight line: 

 zi = ai + Uix,  (4) 

where ai is the phase shift at the ith interval, zi is the 
result of piecewise linear approximation of the phase 
front at this interval. In Eq. (4) and below the 
subscripts j are omitted. 

To find the values of ai, let us use the method 
described in Ref. 4. The condition of joining in this 
case can be written as 

 ai + Uixi = ai+1 + Ui+1xi,  (5) 

where xi is the value of the coordinate at the point i. 
According to Eq. (5), we can write the system of 

M$1 linear equations 

 am$1 $ am = (Um $ Um$1)xm$1; m = 2, M . (6) 

One more equation, complement to the system 
(6), can be obtained from the condition that the phase 
averaged over the entire aperture should equal zero 

 ∑
i=1

M
 

 ⌡⌠
xi$1

xi
 

 
(ai + Uix) dx = 0 .  (7) 

Taking into account that xi = Δx i, Δx = L/M, where 
L is the size of the sensor aperture, upon integration 
the Eq. (7) takes the form 

 ∑
i=1

M

 ai = $ 
Δx
2  ∑

i=1

M

 Ui(2i $ 1). (8) 

Thus, we derive the system of linear equations 
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 , (9) 

where bi = (Ui+1 $ Ui)iΔx; γ = $ 
Δx
2  ∑

i=1

M

Ui(2i $ 1). 

Having solved Eq. (9), we obtain the algorithm 
for reconstruction of the actual phase front from 
measured values of its local tilts: 

 ai = 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(Uq+1 $ Uq) $  

 
⎦
⎥
⎤ $ ∑

q=1

i$1

 q2(Uq+1 $ Uq) $ 
1
2∑
q=1

M

 (2q $ 1)Uq .  (10 ) 

Applying the procedure (10 ) to all rows of the 
array U and all columns of the array V, we obtain the 
value of the phase shift at the ijth subaperture along 
the coordinates x and y, respectively. Let us return to 
indexing by rows and columns. Then the phase front  
reconstructed all over the aperture can be written as 

 Φij = 
1
2(a

x
i,j + a

y
i,j + Ui,jxi + Vi,jyj), (11) 

where a
x
i,j and a

y
i,j are the results of piecewise linear 

approximation over rows and columns of the aperture 
matrix, respectively. 

Phase front aberrations are well described by 
polynomials of no higher than the third order.1 It follows 
therefrom that for realization of the phase-front corrector 
capable of compensating for nonstationary distortions at 
least by 70 $80 %, it is sufficient to accept in Eq. (2) that 
Nx = Ny = 2, li(x) = xi, lj(y) = yi. The coefficients of the 
polynomial can be determined simultaneously with 
estimating the mean tilts. Toward this end, let us use the 
results of piecewise linear approximation and present the 
reconstructed phase front in the following form: 

 G(x, y) = c1x + d1y + c2x2 + d2y2.  (12) 
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The coefficients ci and dj can be found using the 
method of least squares, which has the following form 
for the problem under consideration: 

 F(G(x, y)) = ∑
j=1

M
 ∑
i=1

M
 (c1x + d1y + c2x2

 + d2y2
 $ Φj,i)2

 → min, 

(13) 

where F(G(x, y)) is the rms deviation. 
To determine the coefficients of expansion, let us set 

the derivatives 
∂F(G(x, y))

∂ch
; 

∂F(G(x, y))
∂dh

, h = 1, 2, equal 

to zero. Then we obtain the system of linear equations, 
which can be presented in the matrix form as 

 

x xy x y x

xy y x y y

x yx x y x

xy y x y y

2 3 2

2 2 3
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2 3 2 2 4

 ⋅ 

c

d

c

d

1

1

2

2

 = 

Φ

Φ

Φ

Φ

x

y

x

y

2

2

 ,  (14) 

where (*)  = 
1
M

 ∑
i

M

(*)i; (*)  = 
1

M2 ∑
j

M

 ∑
i

M

(*)j,i. 

Solution of Eq. (14) by the method of inversion 
gives the vector of control actions || c1d1c2d2 ||T. 

 

3. Evaluation of accuracy and computer 
power needed 

 

Let us analyze now the noise errors of phase front 
reconstruction with the use of the method proposed.  
We consider random parameters, what simplifies the 
mathematics. The following conditions are taken into 
account in analysis. The Hartmann-type phase-front 
sensor of the adaptive optical system records a weak 
optical signal. The measurement errors at neighbor 
subapertures of an adaptive optical system are 
independent. Physically, this can be justified by the 
fact that optical signals in different channels of the 
phase-front sensor are recorded with different quadrant 
photodetectors. At large M the size of the quadrant 
photodetector is far less than the size of the receiving 
aperture. Then the signal at the output of each 
photodetector of the Hartmann sensor is a mixture of a 
signal and noise. The distribution density of this 
mixture is described by the following equation5: 

P(ni,j) = exp[$(λ + μ)] × ∑
s=$∞

∞

Is(λ + μ)Js$ni,j
(λ $ μ), (15) 

where λ and μ are the parameters of Poisson noise at 
the opposite cells of the quadrant photodetector, Is is 
the modified Bessel function of the sth order; Js$ni,j

 is 

the Bessel function of the (s $ ni,j)th order. 
The following equality: 

 α11 = 0   (16) 

is valid for the correlation moment of the measurement 
errors at the neighboring subapertures. 

The first and second initial moments of the 
measurement errors in local tilts α1 and α2 within the 
quadrant photodetector can be thought constant and 
equal to5: 

 α1P = λ $ μ;  α2P = λ + μ + λ2 + μ2 $ 2λμ; 

 α1G = mn = 0 ;  α2G = σ2
n ,  (17) 

for Poisson and Gaussian noise, respectively. In 

Eq. (17) mn and σ2
n are the mathematical expectation 

and variance of the Gaussian noise. 
Taking into account the principle of superposition 

and in view of the linear character of the obtained 
method for reconstruction, when analyzing the 
reconstruction errors, signals at the output of the 
device employing this algorithm can be thought to have 
the form 

 Uj,i = n
x
j,i; Vj,i = n

y
j,i,  (18) 

where n
x
j,i and n

y
j,i are the statistically independent 

noises of measurements along the rows and columns of 
the matrix, respectively. 

Consider the y cross section of the phase front. 
The first-order moment of the noise error can be written 
as follows: 

 <ni,j> = < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q) q(ni+1,j $ ni,j) $ 

  $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+1,j $ ni,j) $ 
1
2 ∑

q=1

M

 ni,j(2q $ 1)  >.  (19) 

In Eq. (19) and below the superscripts are 
omitted. Upon making simple transformations and 
neglecting the terms of the order of 1/M2 and smaller, 
we can write Eq. (19) in the following form: 

 <ni,j> ≈ < ⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (ni+1,j $ ni,j) $ 

 $ 
1
2 ni,j > ≈ $ 

1
2 α1. (20 ) 

Thus, with the allowance for Eq. (17), the 
mathematical expectation of the noise error of 
reconstruction is equal to: 

for Poisson noise 

 mP = $ 
1
2 α1P = $ 

1
2 (λ $ μ)  at (λ $ μ) ≠ 0  ; 

 mP = 0   at (λ $ μ) = 0  ; (21) 

and for a Gaussian noise model 

 mG = $ 
1
2 α1G = 0 .  (22) 

The second-order moment of the noise error can be 
presented as 

 <n2
i,j> = < 

Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(ni+1,j $ ni,j) $ 
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 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+1,j $ ni,j) $ 
1
2∑
q=1

M

 ni,j(2q $ 1)  > × 

 × < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(ni+1,j $ ni,j) $ 

 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+1,j $ ni,j) $ 
1
2 ∑

q=1

M

 ni,j(2q $ 1)  > .  (23) 

Taking into account the terms making the largest 
contributions, we have 

 <n2
i,j> ≈ < ⎣

⎡
⎦
⎤

⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (ni+1,j $ ni,j) $ 

1
2 ni,j  

2
 > ≈ 

 ≈ ⎝
⎛

⎠
⎞M2

18  $ 
M
18 $ 

2
9M

 α2.  (24) 

Thus, the variance of the noise error can finally be 
presented as 

 σ2 = ⎝
⎛

⎠
⎞M2

18  $ 
M
18 $ 

2
9M

 α2 + 
1
4 α

2
1.  (25) 

Taking into account Eq. (17), we derive the 
equation for estimation of the noise error under the 
conditions of Poisson noise: 

σ2
P = ⎝

⎛
⎠
⎞M2

18  $ 
M
18 $ 

2
9M

 (λ + μ $ 2λμ + λ2
 + μ2) + 

1
4 (λ $ μ)2. 

(26) 

From analysis of Eq. (26) it is seen that the noise 
error is smallest in the case of a plane phase front and 
equals to 

 σ2
P = ⎝

⎛
⎠
⎞M2

18  $ 
M
18 $ 

2
9M

 2λ   at λ = μ.  (27) 

For the sake of comparison with the known 
algorithm for reconstruction of the phase front,6 let us 
derive the equation for the noise error under the 
condition of Gaussian noise. With allowance for 
Eq. (17) this error can be written as 

 σ2
G = ⎝

⎛
⎠
⎞M2

18  $ 
M
18 $ 

2
9M

 σ2
n.  (28) 

Thus, the obtained analytical equations allow 
comparative analysis with the known algorithms in the 
accuracy of phase front reconstruction. 

The degree of correlation of the results of phase 
front reconstruction is of great interest. The correlation 
moment for the results of approximation of the phase 
front at two arbitrary subapertures can be written as 

 <ni,j nw,j> = < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(ni+1,j $ ni,j) $ 

 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+1,j $ ni,j) $ 
1
2∑
q=1

M

 ni,j(2q $ 1)  > × 

 × < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(nw+1,j $ nw,j) $ 

 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(nw+1,j $ nw,j) $ 
1
2∑
q=1

M

 nw,j(2q $ 1)  > ; 

 w ≠ 
⎩
⎨
⎧i + 1
i $ 1.  (29) 

Taking into account the terms making the largest 
contribution and the condition (16), we have 

<ni,j nw,j> ≈ < ⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (ni+1,j $ ni,j) $ 

1
2 ni,j  × 

 × ⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (nw+1,j $ nw,j) $ 

1
2 nw,j  > = 

 = < ⎝
⎛

⎠
⎞M2

36  $ 

M
18 + 

2
9M

 (ni+1nw+1 $ ninw+1 $ ni+1nw + ninw) $ 

 $ ⎝
⎛

⎠
⎞M

12 $ 
1

6M
 $ 

1
12  (nw+1ni $ nwni + ni+1nw $ ninw) $ 

 $ 
1
4 ninw > = 0 .  (30 ) 

Thus, the results of approximation of the phase 
front at two arbitrary subapertures do not correlate. 

The correlation moment for the results of 
approximation of the phase front at two neighbor 
subapertures can be written as 

 <ni,j ni+1,j> = < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(ni+1,j $ ni,j) $ 

 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+1,j $ ni,j) $ 
1
2∑
q=1

M

 ni,j(2q $ 1)  > × 

 × < 
Δx
M

 
⎣
⎢
⎡
∑
q=i

M$1

 (M $ q)q(ni+2,j $ ni+1,j) $ 

 $ 
⎦
⎥
⎤

∑
q=i

i$1

 q2(ni+2,j $ ni+1,j) $ 
1
2∑
q=1

M

 ni+1,j(2q $ 1)  > .  (31) 

After transformations similar to Eq. (30 ) and 
taking into account Eq. (17), we have 

<ni,j 

ni+1,j> ≈ < ⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (ni+1,j $ ni,j) $ 

1
2 ni,j  × 

 × ⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞M

6  $ 
1

3M
 $ 

1
6  (ni+2,j $ ni+1,j) $ 

1
2 ni+1,j  > = 

<ni,j 

ni+1,j> ≈ ⎝
⎛

⎠
⎞$M2

36  + 

M
18 + 

2
9M

 + 

1
2  (λ + μ $ 2λμ + λ2 + μ2). 

(32) 

Thus, the correlation moment of the results of 
phase front approximation at the neighbor subapertures 
is proportional to the measurement error and depends 
on the number of subapertures. 

Let us estimate the computer power needed for 
realization of the proposed method of phase front 
reconstruction. To determine one value of ai,j, a 
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computer must execute 7M2/2 + 3M2 + 3 operations. 
The number of subapertures is equal to M2, and two 
measurements of local tilts are performed at each 
subaperture. So, the calculation of ai,j all over the 
aperture requires 2M2(7M2/2 + 3M2 + 3) operations. 
Taking into account the operations needed for joining 
the measurement results in the planes zox and zoy, the 
computer power needed for realization of the whole 
algorithm can be presented as 

 Q = 13M4 + 8M2.  (33) 

Equation (33) allows comparative analysis with 
the known algorithms. 

4. Conclusions 

Thus, in this paper we propose the structure of a 
few-parameter phase-front corrector capable of 
compensating for nonstationary distortions of an 
arbitrary form and the algorithm for control over it. 
Application of the LiNbO3 electrooptical crystals allows 
us to exclude such phenomena as hysteresis and the 
phase delay of the response. 

The analytical equations are derived for estimation 
of the noise error and the correlation moments of the 
results of phase-front reconstruction at the neighbor 
subapertures against the background of Poisson and 
Gaussian noise. These equations can be used for 
analyzing the quality of phase conjugation algorithms. 
In the case of the plane phase front, the noise error 
takes its minimum value against the background of 
Poisson noise. The results of phase front  
 

reconstruction at arbitrary subapertures are independent; 
the correlation properties manifest themselves only 
between the neighboring subapertures and are 
proportional to the measurement error of local tilts. 

The proposed method has been implemented on 
Pentium 166MMX PC with the MATHCAD$7 Pro 
application. The results of simulation and comparative 
analysis with the algorithm of phase front 
reconstruction from Ref. 6 have shown that, although 
our method gives a little bit lower accuracy of phase 
front reconstruction, it requires about 

M(0 .0 8M2 + 0 .5M) times less computer operations. 
The algorithm is versatile and can be implemented with 
the use of analog devices7 and modern high-efficient 
parallel computer systems. 
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