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The approach known in the atmospheric optics as exponential series is used to derive the equation 

for spectrally integral characteristics of the light upon propagation through an inhomogeneous emitting 
aerosol$molecular medium. 

 

1. Statement of the problem 
 
The equation of radiative transfer in an 

inhomogeneous aerosol$molecular medium  
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is written for the spectral (at the frequency ω) 
intensity I of a beam coming at the point r along the 
unit vector n; i, σ, η, and ϕ are the coefficients of 
molecular absorption, aerosol extinction, emission, and 
the properly normalized scattering phase function. 
Assume that we need a spectrally integrated parameter  
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that usually appears when discussing the radiative 
properties of the atmosphere. 

The practical problem expressed by Eqs. (1) and 
(2) is well known. The integral term in Eq. (1) 
presents certain computational difficulties. This term 
describes scattering whose characteristics rather slightly 
depend on ω. Molecular absorption, in its turn, is 
essentially trivial in the problem of wave propagation. 
However, it significantly increases the bulk 
computations by Eq. (2) because of a huge number of 
spectral lines involved. Of course, we would like to 
have an equation for direct calculation of Eq. (2). Here 
it proves helpful to use the approach called the 
exponential series. 

Let us present this term in the context of Refs. 1$
3. Assume that we consider the absorption function P 
for a ray of length l in a homogeneous purely molecular 
medium, then  
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The newly introduced function S(g) is monotonic 
(in spite of œpeakedB i(ω)) and inverse to  

 g S( ) = ∫
1

Δω
dω ; (4) 

 i( ) , [ , ]ω ω ω ω≤ ∈ ′ ′′S . 

We use b
ν
 and g

ν
 to denote the ordinates and 

abscissas of the quadrature formula selected to 
numerically calculate the second integral in Eq. (3). 

The idea of using Eq. (3) to solve the problem 
posed in Eqs. (1) and (2) has been put forward in 
Ref. 4 as applied to a homogeneous medium without 
emission (η = 0 in Eq. (1)). The corresponding scenario 
looks like the exact transformation, while the series in 
Ref. 3 is a sort of approximation. Let us now present 
its basic elements. 

The function J(r, n, l; ω) is introduced, which is 
the solution of the equation 

n n r ngrad ( ) ( , , ; )J
J

l
J J l+ = − + + ′ ′∫

∂

∂
σ ϕ ωi d  (5) 

with the boundary conditions 

 J J( , , ; ) ( , , ; )r n r n0 0ω ω= ∞ = . (6) 

Upon integration dl(...)

0

∞

∫  of Eq. (5) under the 

condition (6), Eq. (1) arises, i.e., (η = 0) 

 I J l l( , ; ) ( , , ; )r n r nω ω=

∞

∫
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The substitution 

 J E l l
=

−( , , ) e ( )
r n

i ω  (8) 

in Eq. (5) eliminates the selective i(ω), and the 
equation for E 
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now includes only ω−independent (within the selected 
range Δω) characteristics of scattering. Therefore, after 
multiplication of Eq. (9) by exp($il) and integration 
over ω with the account of the definition (3), we have 
the following equation: 
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äl
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which involves the function 
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Equations (2), (7), (8), and (11) give rise to the 
chain 
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which demonstrates the need for integration over l. It is 
just at this stage when we make use of Eq. (3) 
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with the obvious reference to Eq. (6). It also follows 
from this chain that 
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The doubtless linear independence of b
ν
 allows us 

to take A
ν
 as the solution of the equation 

 ( )n r,n n r,ngrad ( ) ( ) ( )A S g A A
ν ν ν

σ ϕ= − + + ′ ′∫ d  (12) 

with the following 

 A b A( ) ( )r,n r,n=∑ ν

ν

ν
. (13) 

Comparing Eqs. (12) and (1), we see that we 
have returned to the same transfer equation. However, 
in the new equation the function i(ω), which varies 
widely with ω, is replaced with the frequency-
independent function S(g

ν
). If the quadrature formula 

in Eq. (3) is chosen properly, Eq. (13) involves only 

several terms in spite of tens of thousands as usually in 
the case of direct numerical integration of Eq. (2). 

The above trick is then generalized to the case of 
an inhomogeneous medium (all aerosol and molecular 
characteristics are functions of r), which requires the 
free radiation of the medium to be taken into account. 
Such a situation is characteristic of most œdifficultB 
spectral region (3$8 μm) in the problem of estimation 
of the atmospheric radiative fluxes. 

 

2. Solution 
 

B y the well known rules I = I(0) + I′, where I(0) 
is the general solution of the homogeneous (at η = 0) 
equation with the boundary conditions of the problem, 
and I′ is a particular solution of the inhomogeneous 
equation. The latter is written in terms of the 
corresponding Green’s function. It is clear that Eq. (2) 
acquires similar structure: A = A(0) + A′. 

The function I(0) also follows the above-
considered scenario. However, because i depends on r, 
now the substitution (8) adds to the right-hand side of 
Eq. (9) the term ($El) n grad i(ω, r), which is 
selective with respect to ω as before. This circumstance 
requires some explanation. The case in point now is 
elimination of i from Eq. (1). Therefore, the exponent 
in Eq. (8) cannot include the term like 

 τ ω= ∫ i
z

z z

( )

( , ( ))

n

r d  

with integration over the ray because then the n-
dependent function τ finds itself under the sign 

d ′∫ n (...) . By the same argument, prior transition from 

Eq. (1) to the integral equation is unreasonable: it 
gives rise to the integral of i with the argument  
r $ zn. And it is by no means reasonable to refer in 
Eq. (9) to the Laplace transform with respect to l. 

So it becomes necessary to invoke some 
approximation. We introduce it based on the condition 

 grad ( , ) / ,i r ω σ2 1<<  (14) 

which is almost unquestionably true in the 
overwhelming majority of applications of atmospheric 
optics. The condition (14) means comparison of the 
œexcessB term with the first term in the right-hand side 
of Eq. (9). Equation (9) can be formally treated as a 
nonstationary equation of transfer (assuming l ~ t, 
where t is time). So for it l = 0(1/σ) in any problem 
with scattering.5 

The condition (14) turns us back to Eq. (9) and 
the following scenario. The only difference is that 
S(g

ν
) → S(g

ν
; r) in the definition (4). Of course, 

recourse to Eq. (14) is again necessary for S(g
ν
; r), but 

now this merely follows from the above-said. 
The final result is just clear: for A(0) we have 

Eq. (13) with A
ν
 replaced with A

ν

(0), that is, solution 
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to Eq. (12) with S(g
ν
; r) in spite of S(g

ν
) and the 

above notes on the comparison of Eqs. (12) and (1). 
It is just a peculiar point arising here and 

associated with the exponential series. Assume that 
there is no scattering and the intensity of external 
radiation is constant within Δω (it is assumed to be 
unity). Certainly, then we have the equation 

A R R
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with integration over the ray coming at the point r 
along the direction n from ($ ∞). Then Eq. (3) is the 
exponential series including ~

( ; )S g
ν
r ; it is constructed 

by the scheme (4) with τ(ω, r) in spite of i(ω). 
However, if we consider purely molecular atmosphere, 
the solution of the problem for A(0) is the series 

 A b

S g R R
(0)

( ; )
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n d

. 

It should clearly be treated as an approximation 
resulting from the condition (14). This is a cost of 
elimination of the term i selective in frequency, from 
the transfer equation in the case of an inhomogeneous 
medium because there is essentially no alternative to 
version (8). 

At the same time, this approximation, that we 
were forced to accept, can be corrected by purely 
heuristic replacement of S(g

ν
; r) by n grad ~( ; )S g

ν
r . 

Actually: 

 S g S g R R( ; ) grad
~
( ; )

ν
r n r n= −

∞

∫
0

d  

then the equation for I
ν

(0) also can be reduced to 

n grad I
ν

(0)
 = $ (n′ grad ~

S ) I
ν

(0) with the exact solution. 

However, there is little sense in such an obvious 
complication of calculations, keeping in mind good 
approximating capabilities of the discussed 
approximation (see Ref. 6). 

A particular solution is 

 ′ ′ ′ = ′ ′∫I G( ; ) ( ; ) ( | )r n r n r n rn r n, d d ,ω η ω
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  (15) 

with the Green’s function G
ω
(rn | r′n′) being a solution 

to the problem 
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under zero boundary conditions. Equations (15) and 
(16) are proved in a rather standard way from the 
mathematical point of view. Equation (1) is multiplied 

by G
ω
, while Eq. (16) is multiplied by I, thus the 

obtained equations are subtracted, and the difference is 
integrated over r and n; the integration limits are the 
medium volume and the sphere of a unit radius. 
Obviously, first terms in the right-hand side disappear. 
Then 

{ }d dn n n n n n n n n n′′ ′′ ′′ − ′′ ′′ =∫ ϕ ϕ
ω ω

( , ) ( ) ( ) ( , ) ( ) ( ) .I G G I 0  

It is sufficient to make permutation of integration 

variables n ←→ n″ in some term and to take into account 

the circumstance that the argument of ϕ is actually  
n $ n″: 

{ }dr r r n r r n r r∫ ′ + ′′ =G I I G
ω ω
( | ) grad ( ) ( ) grad ( | ) 0. 

Actually, the expression under consideration is 
reduced to 

 n r r r rd∫ ′grad( ( ) ( | ))I G
ω

 

with the following transition to integration over the 
medium surface, where G = 0. The program of 
elimination of the selective i(ω) from Eqs. (2), (15), 
and (16) and the scenarios of this action remain, in 
fact, the same. Of course, some details change a little 
bit. Let us comment just these details. 

The function ψ
ω
(r, n, l | r′n′) is introduced which 

satisfies the equation 
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use of the condition that 2 1

0
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∫ ). The analog of 

Eq. (8) is 

 ψ
ω

ω( | ) e ( | ).( , )
r n r n r n r n

r
l l

l
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−i Φ   (18) 

The substitution of Eq. (18) into Eq. (17) with the 
mandatory reference to the condition (14) leads to the 
equation 

− + = − ′′ + − ′ − ′∫n n r r n ngrad ( ) ( ) ( ).Φ Φ
∂Φ

∂
σ ϕΦ δ δ δ

l
ld 2  

  (19) 

This equation is actually independent of ω (see 
also the comments to Eq. (9)). When deriving 
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Eq. (19), we used usual relationship 
δ(l) exp(il) = δ(l). The corollary of Eqs. (2), (15), 
and (18) is the equation 
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Equation (20) includes the parameter 

 H l
l( , ) ( , ) e .( , )

r r
r

=

′

′′

−∫
1

Δω
η ω ω

ω

ω

ωi d   (21) 

In the theory of radiation transfer this parameter is 
often called the source function. Application of the idea 
(3) and (4) to the equation of the type (21) with some 
f(ω) in spite of η gives the exponential series 
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Then, η = η1 + η2, where η1 and η2 are the 
coefficients of emission of the aerosol and molecular 
gas. Of course, η1 = B(ω, Θ)q with the Planck 
function B (for the temperature Θ) and the aerosol 
coefficient of absorption q. The latter, as earlier 
scattering characteristics, is independent of ω within 
Δω. Similar equation is often written for η2 as well. 
However, there are situations7$9 where local 
thermodynamic equilibrium is violated and η2 = iBρ 
with the corresponding factor ρ. The substitution of η1 
in Eq. (20) (A

1
′ is the term corresponding to η1 in A′) 

and notes on q result in the procedure (22) and (23) 
with f = B and i(ω) → i(ω, r). The latter also means 
that γ(g) → γ(g, r). The parameter 
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The equation for Φ
ν
 follows from Eq. (19), 

integrated according to Eq. (24), and taking into 

account that the condition (14) is naturally transformed 

in the approximation for γ(g; r). Equation (12) was 
derived in the similar way. Now we have 

 

( )− = − + +

+ ′′ + − ′ − ′∫

n r

n r r n n

grad ( ; )

( ) ( ),

Φ Φ

Φ

ν ν ν

ν

σ γ

ϕ δ δ

g

d

 

(25)

 

because 
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In discussion of Eqs. (15) and (16) in the œreverse 
order,B we see that Eq. (25) is the Green’s function for 
Eq. (1) in which i → γ(g

ν
; r) and η → Ω(r | q | r). If we 

denote its particular solution as Iν
( )1 ′ , then the 

corollary of Eq. (24) is A
1
′
= ∑ ′b I 1

ν

ν

ν
( ) . Similar 

reasoning can be applied to A
2
′ (the term corresponding 

to η2 in Eq. (20)). It should only be noted that the 
place of q is occupied by the correspondingly selective 
i, and it certainly is in the integrand of Eq. (23). 
Therefore, we need to differentiate Eq. (21) (with 
η → η2) with respect to l in order to return to the 
already used procedure. Although it is rather rarely 
needed to pay attention to violation of the local 
thermodynamic equilibrium, for our consideration, to 
be general, we take B → Bρ, what leads to different γ′ 

and Ω′. So, A
2
′ = ∑ ′ ′

b I I
2 2

ν

ν

ν ν
( ) ( )

, is a particular solution 

of Eq. (1), if 

 i → ′ → ′ ′γ η γ
ν ν

( ; ), ( ) ( ; )g gr r rΩ . 

 

3. List of formulas used in calculations 
 

Let us write down the final formulas (and the 
corresponding equations) for the parameter given by 
Eq. (2). The designations introduced above are left 
without any comments: 
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; r) is the function inverse to 
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γ(g; r) is the function inverse to 
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