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The influence of collisional excitation mechanisms on spectral line shape is studied theoretically. 
The influence of an external electric field on line shape formation has been investigated using the density 
matrix representation.  The He atom transition lines 41P1 $ 21S0, 41P1 $ 21P1, 41D2 $ 21S0, 41D2 $ 21P1, 
41F3 $ 21S0, 41F3 $ 21P1 are considered. 

 

Introduction 
 

Spectral line shape is an important object of study 
in spectroscopy. This is connected with its role in the 

study of mechanisms of elementary processes in plasma, 
as well as with problems of plasma diagnostics. 

It should be noted that line shape is a very sensitive 
instrument in plasma diagnostics. The availability of 
information on this object allows one to determine the 
distribution functions of perturbing particles, 
particularly those with pronounced anisotropic 

properties.1$5  Besides, diagnostics based on spectral 
line shape are indispensable for studying spectra with 
overlapping contours. 

Although spectral broadening theory is quite well 
developed,6 it deals, as a rule, with isotropic 
mechanisms of broadening. On the other hand, it is 
well known that anisotropic mechanisms of spectral line 
broadening may significantly alter the line shape and 
cause it to be asymmetrical. 

The works of Rebane7$9
 were the first to investigate 

the influence of anisotropic collisions on line shape. 
Later,10$13 the theory of anisotropic broadening of 
spectral lines of atoms and ions colliding with beams of 
charged and neutral particles was elaborated using the 
density matrix apparatus. 

In addition to anisotropic collisional mechanisms,  
characteristics of plasma emission are strongly affected 
by the presence of an external electric field. In 

particular, we have shown14$15 that an electric field 
induces changes in the polarization and angular 
radiation characteristics comparable to the effects of 
anisotropic collisions. 

In this work we theoretically investigate the 

influence of collisional excitation mechanisms on 
spectral line shape in an external electric field for the 
case of atomic excitation by electron impact. 

 

1. Atomic emission line shape  
in an external electric field 

 

The spectral line shape is the Fourier transform of 
the correlation function F(t) describing the time 
dependence of state of the atom16 

 I(ω) = 
1
π Re ⌡⌠

0

∞

 F(t) e$iωt dt . (1) 

In the density matrix representation the 
correlation function is described by the elements of the 
density matrix ρM0M0

 of the atomic state | M0> after 

photon emission, which is related to the density matrix 
ρMM′ of the atomic states | M> before emission through 
the radiation transition operator D  

 F(t) = ∑
M0

 ρM0M0
 = 

 = ∑

MM′

M0

 < M0|(eD)|M > < M′|(eD)+ | M0 > ρMM′.  (2) 

The density matrix ρMM′ of an atom is determined 
by the elementary processes in which the atom has 
participated prior to  emission. Thus, the line shape 
carries information about all the processes taking place 
in the plasma. 

In the presence of an external electric field, it is 
necessary to describe the atomic state in terms of the 
Stark wave functions | M > and | M0> which in the 
expansion of an isolated atom in terms of the wave 
functions | J′ M > have the form 

 | M > = ∑
J′

 CJ′| J′ M >.  (3) 

Let the atom after a photon emission pass into the 
state | M0> which is not perturbed by the field: 
| M0> = | J0 M0>. 

Introducing the polarization tensor t (k)
q  by 

expanding in terms of the spherical components of the 
polarization vector e

λ
 

t (k)
q  = ∑

q1q2

 ($ 1)q 2k + 1 
⎝
⎛

⎠
⎞1 1 k

q1 $ q2 $ q
 e(1)

q1
e(1)
q2

, (4) 

we arrive at the following expression for the line shape 
in the dipole approximation:  
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 I(ω) = 
1
π ∑

M0M

   ∑
J′J′′

 ∑

q
1 
q

2

k q

 ($ 1)q
1 2k + 1 × 

 × ⎝
⎛

⎠
⎞J0 J′ 1

M0 $ M $ q1
 ⎝
⎛

⎠
⎞J0 J′′ 1

M0 $ M $ q2
 ⎝
⎛

⎠
⎞1 1 k

q1 $ q2 $ q
 × 

 × t (k)
q

 Re {< J0 || D(1) || J′ > < J0 || D(1) || J′′ >* × 

 × CJ′(M) C*
J″(M) ⌡⌠

0

∞

 ρMM(t) e$iωt dt } ,  (5) 

where ρMM(t) is a solution of the kinetic equation for 
the density matrix,17 which takes into account the 
processes in which the atom has participated. 

As can be seen from Eq. (5), the line shape for the 
transition J → J0 is a superposition of contours created 
separately by each state  | M>. 

 

2. Kinetic equations for elements  
of the density matrix ρMM(t)  
in an external electric field 

 

The kinetic equation for the elements of the 
density matrix ρMM(t) which take into account 
collisional excitation of an atom and spontaneous 
emission in an external electric field has the form 

 ρ⋅MM = 

= $ (ΓMM $ iωM) ρMM + 

⎝
⎛

⎠
⎞ ∑

M0

 NMM
M0M0

 
 
ρM0M0

 fN(t) , (6) 

where ΓMM is the inverse lifetime of the atom’s Mth 
level, NMM

M0M0
 is the excitation matrix describing the 

Mth state of the atom excited by electron impact. The 
function fN(t) describes the time dependence of the 
excitation. 

In the case of uniform population of the lower 
state ρM0M0

, the general solution of the kinetic 

equation takes the form 

 ρMM = 
⎝
⎛

⎠
⎞ ∑

M0

  NMM
M0M0

 
 
 ρM0M0

(0)  e$ (Γ
MM

 $ iω
M

)t × 

 × ⌡⌠
0

t

 fN(t′) e(Γ
MM

 $ iω
M

)t′ dt′ .  (7) 

It follows from Eqs. (5)$(7) that in the case of 
quasistationary excitation the M-component of the line 
shape includes the Lorentz and dispersion contours, as 
well as the Fourier transform of the excitation function  

 Re ⌡⌠
0

∞

 ρMM(t) e$iωt dt = 

= ρM0M0
(0)

⎝
⎜
⎛

⎠
⎟
⎞ ∑

M0

NMM
M0M0

 

Γ2
MM 

(Γ2
MM + ω2

M)
 

1

(Γ2
MM + (ω $ ωM)2)

 $ 

$ ρM0M0
(0)

⎝
⎜
⎛

⎠
⎟
⎞ ∑

M0

NMM
M0M0

 

ωM 

(Γ2
MM + ω2

M)
 

(ω
 

$ ωM)

(Γ2
MM + (ω $ ωM)2)

 + 

+ ρM0M0
(0)

⎝
⎜
⎛

⎠
⎟
⎞ ∑

M0

NMM
M0M0

 

ΓMM 

(Γ2
MM + ω2

M)
 Re ⌡⌠

0

∞

 fN(t) e$

iωt
 dt. 

(8) 

Numerical calculations show that the ratios of the 
amplitudes of the dispersion line shape to the Lorentz 
line shape and of the Fourier transform of the 
excitation function to the dispersion line shape in the 
case of spontaneous emission are less than unity. 
Therefore, the Lorentz line shape plays the main role in 
the formation of the line shape’s M-component. The  
presence of a constant dispersion component leads to 
asymmetry even of those emission lines, in the formation 
of which only one M-component participates. The 
relative contribution of the Fourier transform of the 
excitation function is so negligible that it cannot 
noticeably affect the spectral line shape. 

In the formation of line shapes with short inverse 
lifetimes (ΓMM << ΔωD) the Doppler effect must be 
taken into account. Then, after averaging Eq. (8) over 
velocities via the distribution function of the emitting 
atoms, the line shape's M-component will be a 

superposition of the Doppler line shape 
1

πΔωD

 × 

× exp ⎣
⎡

⎦
⎤

$ ⎝
⎛

⎠
⎞ω $ ωM

ΔωD

2 

 and the corresponding dispersion 

line shape  
(ω $ ωM)

πΔωD

 exp ⎣
⎡

⎦
⎤

$ ⎝
⎛

⎠
⎞ω $ ωM

ΔωD

2 

. 

 

3. Excitation matrix in the case of He  
atom excitation by electron impact  

in an external electric field 
 

In the case of He atom excitation by electron 
impact, in the electron velocity distribution function 
fe(v) a slow (Maxwell) and a fast (beam) part may be 
distinguished: 

fe(v) = W{exp [$ (v $ vd)2/v2
0] + γδ(v $ vb)} . 

Here vd is the drift velocity of the slow electrons, 
vb is the velocity of the beam electrons, v0 is the 
velocity of thermal motion of the electron, W is a 
normalization factor, and γ is the contribution of the 
beam electrons. 

To form the excitation matrix NMM
M0M0

 in terms of 

the density matrix representation in an external electric 
field, we  write the slow part in the form of an 
expansion over multipole moments f (k)

0 (v) (Ref. 14) 

 fe(v) = W[∑
k

 f (k)
0 (v)Y(k)

0 (Ω) + γδ(v $ vb)].  (9) 
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The multipole moments f (k)
0 (v) of the distribution 

function can be found from the inverse transform 

f (k)
0 (v) = ⌡⌠ exp [$ (v $ vd)2/v2

0] Y(k)
0 * (Ω) d(Ω). (10) 

Expanding the exponential in a series up to the 
fourth order inclusive, we obtain the following 
expressions for the multipole moments f (k)

0 (v) of rank 

k = 0, 1, and 2:  

f (0)
0 (v) = 2 π ep2

1 ep2
2v

2
 (1 + 

2
3
 p2

1 p
2
2 v

2 + 
2
15

 p4
1 p

4
2 v

4), 

 f (1)0 (v) = 4 
π

3
 ep2

1 ep2
2v

2
 p1 p2 (v + 

2
5
 p2

1 p
2
2 v

3), 

f (2)
0 (v) = 

8
3
 

π

5
 ep2

1 ep2
2v

2
 p2

1 p
2
2 (v2 + 2p2

1 p
2
2 v

4),  (11) 

where p1 = vd/v0, p2 = v1/v0, v1 is the velocity 
corresponding to the excitation threshold, and v is the 
relative velocity of the slow electrons measured in units 
of v1. 

Using the well-known dependence of the atomic 
excitation cross section on the relative energy of the 
exciting electrons u (Ref. 16)  

 σ(J′, J0) = Na [πa2
0] v ⎝

⎛
⎠
⎞ 

Ry

ΔE(J′, J0)

2

 ⎝
⎛

⎠
⎞E(J′)

E(J0)

3/2

 × 

 × 
Q(x)(J′,  J0)

(2l0 + 1)
 G(J′) 

u

u + 1
 

u

u + ϕ(J′) 
, 

we arrive at the following expression for the excitation 
matrix:  

NM′M″
M′

0
M″

0
 = 

4 2π
  

Na 
[πa2

0]

me

 
 

Ry2

(kT)3/2 ∑
J′J′′

 C*
J′(M′) CJ″(M″) × 

 × G(J′) G(J″) ⎝
⎛

⎠
⎞E(J′) E(J″)

E(J0) E(J0)

3/4

 (2L0 + 1) × 

 × (2J′ + 1) (2J″ + 1) (2L′ + 1) (2L″ + 1) × 

 × ∑
M′

1M″
1

M′
00

M″
00

 ($ 1)J′ + J″ + M ′
0 $ M″ $ M″

1 $ M ″
00 × 

 × ∑
xk
k1k2

 (2k1 + 1) (2k2 + 1) 2k + 1 ⎝
⎛

⎠
⎞J0 J′ k1

M ′
0 $M′ $q1

 × 

 × ⎝
⎛

⎠
⎞J0 J″ k2

M″
0 $M″ $q1

 ⎝
⎛

⎠
⎞J0 J′ x

M′
00 $M ′

1 q
 ⎝
⎛

⎠
⎞J0 J′ k1

M′
00 $M ′

1 q
 × 

 × ⎝
⎛

⎠
⎞J0 J″ x

M″
00 $M″

1 q
 ⎝
⎛

⎠
⎞J0 J″ k2

M″
00 $M″

1 q
 × 

 × ⎝
⎛

⎠
⎞k1 k2 k

q $q 0  ⎝
⎛

⎠
⎞k1 k2 k

q1 $q1 0  
⎩
⎨
⎧

⎭
⎬
⎫L0 J0 S

J′ L′ x
 × 

 × 
⎩
⎨
⎧

⎭
⎬
⎫L0 J0 S

J″ L″ x
 
⎩
⎨
⎧

⎭
⎬
⎫l0 L0 Lp

L′ l′ x
 
⎩
⎨
⎧

⎭
⎬
⎫l0 L0 Lp

L″ l″ x
 F (k)

0 (J′, J′′) , 

where 

 F (k)
0 (J′, J″) = 

 = ⌡⌠
0

∞

 f (k)
0 (v) 

v2 $ 1
(v2 + ϕ(J′) $ 1) (v2 + ϕ(J″) $ 1)

 v2 dv. 

Numerical calculations of the He-atom excitation 
states  41P1, 41D2, and 41F3 show that the relative 
populations of the magnetic sublevels of the atomic 
excited states vary as the external electric field strength 
is increased. Therefore, as can be seen from Eq. (8), an 
external electric field alters the  amplitudes of the line 
shape's M-components. 

 

4. Calculational results 
 
Line shapes were computed for the He-atom 

transitions 41P1 $ 21S0, 41P1 $ 21P1, 41D2 $ 21S0, 
41D2 $ 21P1, 41F3 $ 21S0, and 41F3 $ 21P1 for field 
strengths from 0 to 90 kW/cm at a gas pressure of 1$
10 Torr and gas temperature of 300 K. 

The computations show that an external electric 
field contribute significantly to the formation of the 
excitation line shape of a He atom excited by electron 
impact. An electric field induces a splitting of the 
magnetic sublevels and, correspondingly, a shift of the 
line shape's M-components. The spacing between the 
M-components can reach 1 nm. Redistribution of the 
magnetic sublevel population of the excited atom in an 
electric field results in the predominant population of 
one M-component, which, according to Eq. (8), alters 
the amplitude of the M-component of the corresponding 
line shape. In addition, the line shape's M-component 
acquires a dispersion component. Its contribution, in 
contrast to collisional relaxation,9 reaches 20$30%. 

 

Conclusion 
 
Our calculations show that an external electric 

field exerts a significant effect on collisional and 
emission processes in a plasma. This effect manifests 
itself in an additional redistribution of the populations 
and shifts of the Stark levels excited by an electron 
beam. 
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