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The method is described for determining parameters of the cathode drop region based on 
simultaneous solution of the discharge equations and an equation describing the development of the 
avalanche of running away electrons. The paper presents the calculated results as well as simple 
relationships between the parameters. A possibility for a high-voltage medium-pressure gas discharge to 
exist in a quasi$stationary mode is shown and the conditions for this are determined. Based on the data 
obtained a mechanism of and conditions for the photoelectronic discharge to occur is discussed. 

 

A pulsed discharge in a narrow gap between the 
parallel solid cathode and grid anode, followed by an 
extended gas$filled region, is called the open discharge.  
It is an efficient source of an electron beam (EB) with 
the power from 1 to 10 keV.1,2 No efficient theory of 
the open discharge has been developed so far.  The 
problem is in the complexity of the description of gas 
ionization by electrons, most of those are running away 
electrons because their velocity (energy) distribution is 
local and depends on the history of each electron.  The 
methods developed for this purpose of solving the 
Boltzmann kinetic equation, based on the Monte Carlo 

methods,3,5
 are very cumbersome and calculated results 

are too complicated for analysis. When the electric field 

distribution is unknown while being a required 

characteristic, the above mentioned methods turned out 
inefficient. The pulsed discharge with running away 
electrons is just this case. 

In the Ref. 6 to describe the running away 
electron avalanche, the ionization density function 
w(x) = dK(x)/dx was introduced, instead of the first 
Townsend coefficient, where K(x) is the number of 
running away electrons at a distance x from the start of 
the first electron. The function w(x) is defined by the 
following equation: 

 w(x) = ϑ n 

⎩
⎨
⎧

⎭
⎬
⎫

σi(0, x) + ⌡⌠
0

x

 w(ξ) σi(ξ, x) dξ  , (1) 

where n is the gas density; σi(ξ, x) is the cross section 
of gas particles ionization at a point x by a cascade 
electron produced at a point ξ; ϑ is the coefficient of 
electron path extension due to scattering.  The quantity 
ϑ equals 1.3 to 1.4 in the fields exceeding twice the 
running away threshold and rapidly approaches 1 with 
the field strengthening.7 Similar function is used8 when 
investigating the initial phase of the breakdown at low 
gas pressures.  In the present paper this approach is 
applied for the first time to calculate the parameters of 
the strong field region in the pulsed gas discharge at a 
medium gas pressure.  This paper describes the solution 
of these problems and their analysis. 

1. The calculation technique 
 

The problem is solved in the quasi-stationary 
approximation. The anode is transparent for the beam 
electrons, therefore their back reflection to the discharge 
gap is neglected. The volume electron charge in the 
strong field is also ignored. In the first approximation 
we can drop the gas ionization by fast ions and neutral 
particles. The gas is helium. We consider the following 
set of equations: 

$ the equation of charge generation in a gas (1).  
In short interelectrode gaps the magnitude of the 
coefficient even in the relatively weak fields can be 
taken to be unity7; 

$ the Dravin formula with the unit fitting 
coefficients for the gas ionization cross section by 
electron impact.  For helium the cross section equals 

 σi(z) = σ0 g(z),   σ0 = 1.43⋅10$20 m2, 

 g(z) = [(z $ 1)/z2] ln (5z/4),   z = ε/J, (2) 

where ε is the electron energy, J is the ionization 
potential of a helium atom; 

$ the equation of current continuity 

 ∂j+(x)/∂x = $ je0 w(x), (3) 

where j+ and je 0 are the ion current density in the 
interelectrode gap and the electron current density at  
the cathode; 

$ the Poisson equation 

 ∂E(x)/∂x = $ [j+(x)/ε0 v+(x)], (4) 

where ε0 is the dielectric constant, v+(x) is the ion 
drift velocity; 

$ the law of ion motion in gas 

 v+(x) = Γ E(x)/n,   Γ = 1 ⋅ 1013; (5) 

$ the dependence of the coefficient of the electron 
cathode emission γ on the field intensity at the cathode 
E(0).  According to the measurement data9 this 
dependence can be approximated by the following 
analytical expression: 

 γ = 3⋅10$4 [e (0)/p ] $ 0.44, (6) 

where [E/P] is measured in V/(Pa ⋅ m).  This 
expression corresponds to the experimental data 
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accurate to the experimental errors at the energy of ions 
and fast atoms in the range from 100 to 1000 eV. 

Traditionally, the set of discharge equations is 
complemented by the normalization equation and the 

boundary conditions10 and is solved by numerical 
methods. 

The boundary conditions at the cathode and anode, 
if any, make the solution of equations more difficult. 
Therefore in this case another approach is used. The data 

on the cathode necessary for making the calculations are 

set beforehand, and after the simulation run the values 
of all the remaining parameters are obtained. As the 
free parameters the electron current density je0 and the 
field strength E(0) at the cathode were left. 

Under conditions favorable for running away the 
cross section σi(ξ, x) in Eq. (1) depends only on the 
potential difference an electron is at.6 Therefore the 
transition to an independent variable z = $e ϕ(x)/J 
(where ϕ(x) is the field potential at a point x) enables 
one to reduce the set of equations (1)$(5) to the 
following equation: 

 Y′′(z) = 

R

Y
0.4(z)

 

⎩
⎨
⎧

⎭
⎬
⎫

G g(z) + ⌡⌠
1

z$1

 g(z $ ζ) Y′′(ζ) dζ , (7) 

where 

Y(z) = ⎝
⎛

⎠
⎞E(z)

E(0)
 

5/2

; R = 

σ0 J n

e E(0)
 ; G = 

2.5 J je0 n
1/2

e ε0 Γ E5/2(0)
 (8) 

with the initial conditions 

 Y(0) = 1,  Y′(0) = $ G/γ,  Y′′(0) = 0. (9) 

In terms of the function Y(z) the parameters of 
interest are determined as follows: 

 U = J z;  x = 
J

E(0)
 ⌡⌠

0

z

 
dζ

Y
0.4(ζ)

 ;  
j+(z)

j+(0)
 = 

Y′(z)
Y′(0)

 ;  

K(z) = 
1
γ
 ⎣
⎡

⎦
⎤1 $ 

j+(z)

j+(0)
 ; n+(z) = 0.9 ⋅ 106

 
E

2(0) Y′(z)

Y
0.2(z)

 . (10) 

Here n+ is the ion concentration; K(z) is the factor of 
charge multiplication in a gas. 
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Fig. 1. Distribution of electric field intensity (a), ion density (b), the charge multiplication factor K(c), and the ion current 
density (d) over the interelectrode gap length at separate values of j

e 0. 
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2. General analysis of solutions 
 

Now we consider a typical problem with the 
following parameters: d is the electrode gap, U0 is the 
voltage applied to it, and P is the gas pressure. 
Figure 1 shows solutions to this problem at different 
values of je0. At a low current the region of strong field 
occupies the entire electrode gap (curves 1$4) and, 
therefore, the set of equations (1)$(6) describes the 
discharge as a whole. As the current increases the 
region of strong field is being localized within the region 
of the length lk close to the cathode (curves 5$8) and 
the cathode drop (CD) occurs there while the plasma 
develops in the remaining part of the gap. The nature 
of the strength E(x) variations is rather complicated. 
In the long electrode gaps and low discharge current 
the gradient dE(x)/dx increases smoothly up to zero, 
and, on the contrary, at a high current it decreases when 
approaching the plasma boundary. The calculated 
results reveal the first property characteristic of the 
discharge that the current amplification in the strong 
field region for all the solutions shown in Fig. 1 turned 
out to be insufficient for a self-maintained discharge to 

occur: γ K(d) (curves 1$4), γ K(Ik) (curves 5$8) < 1. 
By this we mean that in the former case the discharge 
occurs with ion current from the region beyond the 
anode and in the latter one the source of this current is 
the near-anode plasma. Therefore the criterion of 
discharge stationarity has the form: 

 γ K{d, lk} = 1 $ r,   r = j+{d, lk}/j+(0). (11) 

Thus, the cathode drop region (CDR) in this discharge 
is not self-sufficient in contrast to the anomalous glow 
discharge.10$12  It turned out that in the CDR formed 
(Ik < d), the quantity r is independent of the discharge 
current, and its dependence on voltage can be 
approximated by the expression 

 r ≈ 0.272 ln [32/U0], (12) 

where U0 is in kilovolts.  As the discharge current jp 
changes, the CDR dimensions vary following the law 

lk ∼ j
$m
p , and the field strength at the cathode $ 

E(0) ∼ jmp, where m = 0.3 in the range of U0 variation 
from 4 to 10 kV. All the above mentioned relationships 
were obtained at a constant helium pressure of 4 kPa 
and the linear dependence of the coefficient γ on E/P 
according to Eq. (6).  As the function (6) changes, the 
ratios between the parameters of the CDR will be 
different and r depends on the discharge current. 

In the general case, to describe the discharge at 
lk < d, the set of equations (1)$(6) should be 

supplemented by the relationships determining the 
generation of charges and their flows in plasma in the 
discharge gap segment d $ lk.  Note that not the entire 
(d $ lk) segment, from the CDR boundary to the anode, 
contributes to formation of the ion current j+(lk), but 
only its part of the thickness lar. The calculations 

allowing for the volume electron charge in the Poisson 

equation indicates that at the CDR and plasma 
boundary the field strength is low. There is a thin layer 
of plasma, where the degree of gas ionization is about 
one order of magnitude higher than that in other parts 
of the discharge gap.12 In this layer the ionization can 
be produced by the electrons injected from the CDR. 
The charge multiplication factor in the layer equals 

 Kar = w(lk) lar, 
and then  
 r = γ Kar. (13) 

Next, having in mind the expression w(lk) = 
= [dKCDR(lk)/dlk] and assuming that lar ≈ d $ lk, we 
derive from Eq. (11) the following equation connecting 
both of the discharge regions: 

 KCDR(lk) = 
1
γ
 $ (d $ lk) 

dKCDR(x)

dx
 

 x = lk
. (14) 

To solve this equation, let us write, based on 
Eq. (6), the coefficient γ in the form 

 γ = θ + ρ/lk (15) 

and introduce the parameters β = lk/d, S = $ ρ/(θ d).  
Then the solution of Eq. (15) takes the form 

 KCDR = K(β) = $ 
1
θ
 

1
S $ 1

 × 

 × 
⎩
⎨
⎧

⎭
⎬
⎫S

S $ 1
 (1 $ β) ln 

1 $ β

1 $ β/S
 + β  . (16) 

Because K(β) and r are determined by the set of 
equations (1)$(5) and (15), the relation (16) gives a 
specific value β at which all the conditions are 
fulfilled.  Thus, from the set of solutions (Fig. 1) only 

one solution remains, which is valid at specified values 
of U0, d, n (or P). The calculations have also shown 
that stationary solutions can be obtained at β from 0.95 
down to 0.8 what shows that the substitution of (d $
 lk) for lar is well justified. 

 

3. Stability 
 

The existence of steady-state solutions does not 
mean that the discharge with the corresponding 

parameters can occur over an extended period in time. 
For this case the discharge must be stable relative to 
fluctuations of the parameters, which are not controlled 

under real conditions. These parameters are the 

fluctuations of the cathode emission current, the charge 
multiplication factor in the CDR, the ion current 
emission from plasma to the CDR. As a result of these 
random processes the fluctuation of strong field region 
size occurs: lk → lk $ δ(lk). It changes the field 
distribution in the CDR that affects the quantities γ 
and w(x). The latter changes K(lk) and affects Kar. 
The variation of these parameters at the size fluctuation 
lk equals: 

 δ(γ) = (γ $ θ) δ(lk)/lk;  δ(e ) = e  δ(lk)/lk; 

δ(w) ≈ $ w δ(lk)/lk; δ(KCDR) ≈ $ KCDR δ(lk)/lk; (17) 
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 δ(Kar) ≈ $ w δ(lk) [(lar/lk) $ 1], 
where Eq. (15) was used for calculating γ. The total 
effect is described by variation of the product γ KΣ = 
= γ[KCDR + Kar], which determines the fluctuation 

decay or the fluctuation effect amplification δ(lk); 

δ(γ j Σ) = 
θ w(lk) 

δ(lk)

lk
 ⎣
⎡

⎦
⎤ρ

θ
 + (lk $ lar) $ 

KCDR(lk)

w(lk)
 . (18) 

If δ(γ KΣ) < 0, then the criterion of independent 
development of the discharge is not performed and the 
variations, caused by the fluctuation, weaken. If 
δ(γ KΣ) > 0, then effect is reverse. In helium the 
coefficient θ is negative (see Eq. (6)) and (ρ/θ) = 
= $ 1.55 ⋅ 10$3 Uk/P. This is a large quantity; at Uk = 
= 4 kV and P = 4 kPa this quantity equals 1.55 mm that 
exceeds the  electrode gap d in the EF generators.1,2 
From Fig. 1 it also follows that KCDR/w(lk) ∼ lk.  
Hence, it follows that under real conditions 
δ(γ KΣ) > 0, i.e., a discharge with the near-anode 
plasma is unstable and it will develop till the 
establishment of a quasistationary mode of anomalous 
glow discharge that is observed in practice.13 

 

 
a 

 
b 

Fig. 2. Distribution of the electric field strength over the 
electrode gap length in a semi-self-maintained discharge (a), 
the value of the coefficient j+(d)/j+(0), and the values 
required for the discharge maintenance the ion current density 
at the anode (b) calculated for some values of j

e 0. Helium 
pressure equals 4 kPa, U0 = 7.5 kV, d = 0.5 mm. 

Quite different  situation will be observed in the 
discharge in the absence of near-anode plasma when a 
strong field occupies the overall electrode gap (curves 
1$4 in Fig. 1). This discharge exists only due to the ion 
current from the region beyond the anode occurring due 
to sagging of the field from the discharge gap or the 

emission from the plasma specially created here. In this 
case the relation (18) is not used to analyze the solution  
stability.  The calculated discharge parameters at lk ≥ d 
are shown in Fig. 2 and indicate that at control over ion 

current, injected through the anode, the discharge is 
stable and controllable.  The experiments14 confirmed 
that such a control is possible.  Thus the existence of 
quasi-steady-state regime of high-voltage discharge in a 

gas at a medium pressure was found to be possible. 
In conclusion we would state that the problem was 

solved in the quasi-stationary approximation. In the 
strong field region this state is achieved during the time 
required for an ion to cross it, that is, about 10 ns. The 
time needed to reach the equilibrium is maximum in the 
region of negative glow that is connected with the 
processes of charge storage for creating plasma with the 
equilibrium concentration and charge transfer in a weak 
electric field. Therefore there is enough time for the  
parameters of strong field region to fit the plasma state. 
Thus, Eqs. (1)$(6), describing the strong field region, 
are also applicable to the transient discharge phase. In 
this case the solutions give the CDR state at any 
moment in time. 

 

4. Photoelectron discharge 
 

Strictly speaking, the set of Eqs. (1)$(6) describes 
a glow discharge. However, it can easily be adapted for 
the case of a photoelectron discharge.15 For this purpose 

the quantity je0 is represented as a sum of two 
components: the current connected with the glow 
discharge mechanism je0(γp) and the photoelectron 
current je0(γν) generated by the UV illumination: 

 je0 = je0(γp) + je0(γν), (19) 

where je 0(γp) = γp j+(0); je 0(γν) = � γν quv; e is the 
electron charge, γν is the coefficient of cathode 
photoelectron emission, quv is the flux of UV quanta 
from a source  of auxiliary illumination incident on the 
cathode. It is evident that the photoelectron regime can 
take place only in the case when je 0(γν) ≥ je 0(γp). If 
assuming γν ≤ 0.1 << γp ∼ 1 (Refs. 9$11) we obtain 
j+(0) << � quv. Hence, the photoelectron regime is 
possible only at a rather low ion current, otherwise, too 
high intensity of UV beam illumination is required. In 
other words, the best condition for it is the discharge 
stage shown in Fig. 2.  In this case the strong field 
region occupies the entire cathode-anode gap, and the 
development of glow discharge slows down (is difficult) 
because γ! K(d) < 1 and the discharge depends on ion 
current from the region beyond the anode. 
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Switching on of a UV illumination produces a 
photoelectron flow from the cathode. This supplementary 
electron current should be taken into account through 
the electron emission coefficient: 

 γΣ = γ! + γν � quv/j+(0). (20) 

On addition of the photoelectron component to γΣ we 
obtain the relationship γΣ K(d) > 1. Thus, the 
photoelectron discharge is a transient process and it is 
perceived as a phase of fast commutation at a breakdown 
of gaps at a high overvoltage.11 Its specific features are 
the anomalously high value of the electron emission 
coefficient from the cathode and the resultant 
anomalously high electric field generation efficiency 
determined by the relation: 

 η = γ/(1 + γ). (21) 

Another feature is in a mechanism of CDR 
generation. In the glow discharges its parameters (voltage 
and dimensions) are determined by the ion flow balance 
to the emission boundary of plasma and from it to the 
CDR.  In a photoelectron discharge this balance does 
not play that important role, because a cathode 
photoelectron flow is independent of the ion current.  
The CDR boundary is solely determined by the external 
field screening condition with a spatial ion charge 
generated by the photoelectrons.  Therefore the 
dimension of the CDR in a photoelectron discharge in 
principle can be less than the CDR size in anomalous 
glow discharge. 

During the photoelectron stage of the discharge 
development an electron beam creates plasma in the 
discharge gap thus increasing the ion current to the 
cathode. As a result the relationship between the 
components of electron current from the cathode 
je 0(γν)/je 0(γρ) starts to decrease.  This finally leads to 
a decrease in the contribution from photoelectron 
mechanism to the discharge development and its 
development to the glow discharge regime. 

Thus the above described method of calculation 
based on the function of ionization density w(x) enabled 
us to determine the strong field region in an open 
discharge, i.e., to define the distribution of principal 

parameters over the discharge gap length, their 
interrelations and the dependence on the initial data. 
The calculated results have shown that regardless the 

low probability of a gas ionization by fast electrons, the 
gas ionization is a very essential factor and it cannot be 

neglected.  The open discharge characteristics are shown 
to be caused both by the peculiarities of gas ionization 
by running away electrons and the geometry of a 
discharge chamber. The obtained pattern enabled us to 
propose an explanation of the photoelectron discharge 
role and mechanism of its occurrence and termination.  
A detailed description of the latter requires the extension 
of the developed method to the solution of unsteady-
state problems. 
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