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It is shown that collisional interference of vibrational bands can occur in the colliding molecules
as a result of isotropic interaction. The equations for relaxation parameters are derived for the case of two
colliding molecules, and spectral manifestation of this effect is discussed. A physical interpretation is
given to the mechanism of collisional interference of lines.

Introduction

Recently, much interest has been shown in
theoretical and experimental studies of the collisional
interference (spectral exchange) between spectral lines.
Theoretical papers are devoted to the development of
theory and calculation techniques for relaxation
parameters and spectral shape, as well as analysis of
spectral manifestation in the model and actual quantum
systems.!718 For the first time, this phenomenon was
noticed in the ammonia inversion spectrum at self-
broadening (although, it was initially interpreted in a
quite different manner, see, for example, Refs. 3 and
19). Then it was observed in NMRZ2 and Raman
spectra. In recent years this effect has been observed in
infrared  rotational-vibrational  spectra of  some
molecules.20-25

However, analysis of the literature on this topic
shows that until so far the mechanism of collisional
interference of spectral lines is not clearly understood,
and the systematic methods for calculation of relaxation
(especially, cross-relaxation) parameters, which would
allow consideration and analysis of the corresponding
effects in molecular rotational-vibrational spectra, are
insufficiently developed. Filling in, to a certain degree,
of the above gaps is one of the goals of this paper.
Another one goal is to consider the principle basis for
appearance  of  collisional interference  between
vibrational bands because of the presence of an
isotropic component in the interaction potential.

In the first section, we give some general results
of the theory of collisional broadening of interfering
spectral lines in the impact approximation for a
convenience. But the main attention is paid to the
technique of calculation of relaxation parameters,
which will be used below. In the second section, based
on Ref. 26, we consider the physical mechanism of
collisional interference of spectral lines. Then the
relations between relaxation parameters are discussed.
(These relations are derived in a not entirely rigorous
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way.) In the third section, the technique for calculation
of relaxation parameters is modified and adapted for
calculations in a specific case of collisional interference
of molecular vibrational bands. In the fourth section,
the equation for absorption coefficient is derived in the
model of two interfering vibrational bands. In the final
section, a possible spectral manifestation of the effect is
qualitatively discussed.

1. Some findings from the theory
of collisional broadening
of interfering spectral lines

In the formalism of the space of lines!:27 and in the
collisional approximation, the coefficient of absorption of
unpolarized 2K-pole radiation of parity 1 (K =1 and
1= —1 for the dipole electric radiation) by an isotropic
gas medium has the following form:
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where P(QTK) is the Q-component of an irreducible

tensor operator of 2K-pole moment of the absorbing
molecule; Ly and p$ are its unperturbed Liouville
superoperator (Liouvillian) and density matrix (in
contrast to ordinary operators, Liouville operators are
denoted by a cap); n, is the density of an optically
active gas; A is the impact relaxation superoperator;
and [...,...]+ denotes the anticommutator. All other
designations correspond to the generally accepted ones.

The superoperator A acts in the space of lines of
an absorbing molecule; its diagonal matrix elements
determine half-widths and shifts of spectral lines, and
the off-diagonal elements, which are hereinafter called
the cross-relaxation parameters, are responsible for the
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collisional interference. In terms of the scattering
superoperator U(—o, ») in the direct product of the
Liouville spaces of an absorbing molecule and a
thermostat particle, this operator has the following
form:

A=-in, J dv POW) Trl {[1 - U(~ ,00)] pb}, (2)

where n, is the density of thermostat particles;

J dvP(v) is the operator of averaging over classical

collisional parameters. Its matrix elements in the basis
invariant relative to the transformed rotational-
inversion group>? are determined by the equation

/A\,%K) =—1n J dv P(v) x
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The parentheses below the summation sign indicate
summation over both primed and unprimed subscripts
shown in the parentheses.
For brevity, we use the following designations for
the vectors of the invariant basis:

Om= @ 7 j (a; jp"; mKOm
Chill= @ ; jp (ay j)"; TKQIM] (4)
B =@/ (@) 00m §m= B (Fr';oom  (5)
O(B) mD= B MO ) 2= YOI 20 (6)

Note that the vectors (B) mDare a particular case of
the vectors @ /j; (a; i) KB rlr Bi " K,OKQm
corresponding to the following scheme of relations
among the moments:

j/f—ji:Ks,lf—li:Kb,Ks‘f‘Kb:K (7

and forming a complete set. In these equations j(I) is
the quantum number of the total angular momentum
operator of the absorbing molecule (thermostat particle),
and a(B) denotes all other quantum numbers.

According to Eq. (3), calculation of the matrix
elements of the superoperator A is closely related to
calculation of the matrix elements of the scattering
superoperator U(—o, ©). The latter, naturally, can be
calculated by applying any known methods for
calculation of scattering matrices in the superoperator
form. Let us follow Ref. 10, which uses for this purpose
a slightly modified method for solution of the evolution
equation in the matrix form.3! Application of this
method leads to a solution in the exponential form.
Since this method is used to determine the diagonal

matrix element of the evolution matrix, let us write
Eq. (3) in the following form:

1/2
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where [@ ,[Mare the eigenvectors of the superoperator U

(M) (—c0, 0) related to the vectors of the initial basis by
the transformation

06, = DCk(G) 9)

Presenting the interaction Liouvillian Lt) as a
sum of the isotropic V(¢) and anisotropic R(¢) parts and
taking into account the isotropic part already in the
first order of the perturbation theory and the anisotropic
part starting from the second order, we have

16,08 (~c0,00) 116, = exp {— 16 ,MA ™ 06,0, (10)
where AT i the matrix of the reduced matrix
elements of the superoperator A. This matrix is
diagonal in the basis of the vectors 0,0 The
superoperator A is determined by the series

+00 +00 ty
21=ij 9(t>dt+J dt, J Ay P B+, an

where the tilde means that an operator is taken in the
interaction representation, and the prime indicates that
the isotropic part of the interaction Liouvillian has no
diagonal matrix elements. Substitution of Eq. (10) in
Eq. (8) gives the sought exponential form for the matrix
element of the collisional relaxation superoperator:

1/2

A _ g 5 BTII o

N~ =~ 1Ny j dv P(v) é&zfn— 2 Ppi l+lH g
®D

xS [h())MDING) I ME(G) D~ M(B)mx
1;7

Q>

x exp [~ 16 ,mA T maum]%. (12)
g

In the basis of vectors (4)—(6), whose explicit
form can be found in Refs. 4 and 9, the matrix elements

of the superoperator AT have the form
5 (B)MATOMY) m= iS:(h. 7 "
Mh (B)MA™™T(Yy) m= iS{(n, mN ) (SBV+
+ So(, MR D guter 8y + @2, MW Iniddie + - (13)

and the parameters S{(n, m& ), So(n, MmO, gyters
O,(n, MmN )piqdie are defined by the equations:
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Si(n, mh ) = = {Ef’f(Bl) Soal —

—(f - i)} (14)

]f]f

where (f - i') means that the term similar to the
previous one should be added with f replaced by ' and
f' replaced by i,

o0 (0" AT () M i) (BIIT(b)WBD)

1
Eff(Bl) d [(2]f+1)(2l+1)J1/2 ) ( 5)
+o00
agy = [ dt exp (= i, ) CoD); (16)
—1
o%m = h (Ea[,]'f - ECX[]'/”)' (17)

(We use a series expansion of the interaction Hamiltonian
over irreducible tensor operators of multipole moments
of the colliding molecules in the following form 10:

H() =y Chvkae) Th(s) TFAb).) It is seen from

1,R2

q1,q2
these equations that the first-order term is caused
exclusively by the isotropic part of the interaction

potential:

.. Chiky
SolnmB owter= 3 ~.2- ¥ H X DCpipiappthy) x
kiky B oy ]f
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the bar here means complex conjugation. It is
designated

(ajl]]]TkDIb(’j')
[k +1) 27 + D]V27

D(oy; o'j'Ok) = 19)

]
and the function of non-adiabaticity [fp,(f'f) is
introduced by the equation

+oo t1
O
Chiky T\ = J dyy I dty x

t - @r )} 3 Cplety) Cpi(ty), (20)

q192

x exp {i(w,y,

with the frequencies 0, and oI, which are described as

—1
Wun = 1 {Eqpjp = Eqpujon + Egy = Egipr}, (21

win=rh"!

(I {E(Xfff - qu,,]‘f,, + EB[ - EB"["}. (22)

Note that the coefficient Cy g, in Eq. (20), which
determines the function of non-adiabaticity fg,x,(f'f),
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can always be chosen so that for the diagonal matrix
element, when f' =/ and W= 0y, its real and
imaginary parts coincide with the corresponding
functions of the theory presented in Refs. 29, 30, and
32. The function fg ,(f'f) in Bessel terms for a number

of the multipole interactions is presented in Ref. 9.

o, (n, mN Dmiddle = z (- 1)]'i'+]'f' +K+ky+1 N
kiky
Cr.k
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(23)
where W(jy j; jrji; Kky) is the Racah coefficient and
D 5 T
Chryk, Re fkkz(lf ) =

_ q1tq k k ki, k
= ¥ DRk, ) 0 kit e (24)
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with the frequencies

Wy = h_1 {Ea/']'f' - Ea/]/+ EBZ EB'Z'}, (25)

-1
W =N {Eaj; = Eaji + Epr ~ Egrk. (26)
The coefficients aq1 51 are the result of integration of
ki,ky

the coefficients ¢ ;2(¢) over time in the equation

similar to Eq.(15). In terms of Bessel functions,
Eq. (24) coincides with the real part of the function from
Eq. (20).

After calculating, by Egs. (13)—(26), the matrix
A we should reduce it to the diagonal form, what gives
the sets of its eigenvalues and eigenvectors. The
procedure should be repeated for every step of
averaging over classical collisional parameters and over
quantum states of the thermostat particle. Then the
reduced matrix element of the impact relaxation

operator A is calculated by Eq. (12).

2. Physical mechanism of collisional
interference of spectral lines
in the impact approximation

To reveal the physical mechanism of collisional
interference of spectral lines, let us present the
scattering superoperator U(—o, «) in the form of direct
product of the direct and inverse scattering matrices
acting respectively in the spaces of the ket and bra
wave vectors

U™ (~0, 0) =S 0 S, (27)

and consider its typical matrix element:
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M ()00 (~e0, 00)O(B) iD=

= Mt (yy)OS O STORRT) fitn=
= [F(yOSIP)fO @ (yosop)id. (28)

The matrix elements of the relaxation superoperator A
are determined in terms of the similar matrix elements in
Eq. (3). Upon its multiplication by the conjugate one,
we have

Ma (PHOTTE (~o0, 0)T(B) D> =
= mi'(y)OSOR)Im*my (y)OSOR)f m?.  (29)

As known, the squared absolute value of the scattering
matrix element determines the probability that two
colliding particles being, for example, in the states [0l
and [BO after collision are, respectively, in the states
'Oand §O. We are only interested in the states [0
and O0f O and Oi'Dand OF'0 which are connected by the
selection rules for a 2K-pole radiation of the parity T,
what follows directly from Eq. (1). So

@~ (BYR) = M7 (YOI ™ (~e, 0)D(B) D (30)

can be interpreted as the probability that the molecule
having absorbed radiation at the transition m =f < i
after collision with the thermostat particle in the state
BO arising at the set v of classical parameters
experiences a radiative transition (that is, absorbs or
emits — the latter is also not improbable) n = f' « @' of
the same parity and the same multipolarity, and the
thermostat particle experiences transition to the state
YO. Having averaged this probability over all the
initial states B0 of the thermostat particles, summed
over all its final states YO and over all “classical
transitions” 7 # m, and averaged over the classical
collisional parameters, we obtain the overall probability
that the molecule absorbing radiation due to the
transition m = f < i after collision with the thermostat
particle experiences some other transition (but having
the same multipolarity and parity). From this it
follows, in particular, the rigorous criterion of whether
or not a spectral line is isolated. Namely, the spectral
line m = f — i broadens in the spectrum irrespective of
all other lines, if

Yoy j AVIDAE 7T (~c0,0)(B) D <<1.

n#m B Y
31

Thus, in the theory of impact broadening of
spectral lines, the mechanism of collisional interference
of spectral lines can be interpreted as the phenomenon
of collisional transfer of the radiative process (with its
possible inversion) from one transition to another, but
having the same multipolarity and parity. Consequently,
this process has a purely non-adiabatic character. It is
essential that this process proceeds without a

disturbance of the coherence of the radiative process. 10
As a result, the mean time of coherence increases, thus
leading to a decrease in the half-width of the lines
taking part in the spectral exchange as compared with
the half-width of isolated lines under broadening. We
explain a significant excess of the line half-widths in
the ammonia inversion spectrum, calculated in the
approximation of isolated line with the allowance made
for only the dipole-dipole interaction, over the
experimental values just in this manner. 16

It should be emphasized here that the relaxation
parameters themselves depend only on the probability
amplitudes of the corresponding transitions. For this
reason, all the attempts to interpret those from the
probability point of view are inconsistent (except for
the model case of a two-level system and some other
particular cases). At the same time, such attempts are
still being undertaken, and for reducing the bulk of
calculations the equations are often used, which have
the following form in our designations:

~ (TIK) ~ (TIK)
SN =Y N =0 (32)
B "

~(K) s A(K)

N " 07 =Nom Py (33)

The former can be obtained from Eq. (3), if in this
equality the second term is interpreted as the
probability of the corresponding transition. However,
this is not the case, and, as was shown in Ref. 13, this
equation is valid only for isotropic Raman scattering.

The latter equation was derived in Ref. 5 and is
interpreted in the literature as the condition of detailed
balance.!3 The central role in derivation of this
equation belongs to the identity p; pg = py pé’,, where
00 BO and 'O [PB'O are, respectively, the states of the
absorbing molecule and the thermostat particle before
and after a collision. This identity is, in essence, the
consequence of the following three assumptions:

(1) The sum energy is conserved at the collision
and, consequently, Eg + E; = Ep + Ej.

(2) Initial correlations are negligibly small, and
the density matrix is factored, that is, p = psp®.

(3) The states of the colliding particles
are nondegenerate, so p; = 23_1 e_E"/(kBT), pg =
=z, e P/ (kgD (kg is the Boltzmann constant and T is
the temperature), etc.

The first two assumptions are undoubted in the
impact approximation, but the third one is, generally
speaking, wrong. Actually, the number of molecules, from
the entire statistical ensemble, that are in the state
0 with the energy E; is proportional not only to the

factor e Fi/ /(kBT), but also to the statistical weight

*Ei/(kBT), plé —

, etc. In this case, for the discussed

g; of this level, i.e., p; =Z;1 g;e

-1 b ~Ep/(kgT
-7, ghe 3/ (kgT)
identity to be valid, the condition g} gg =gy gé’v should
hold under the assumptions (1) and (2), that is, the
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product of statistical weights of colliding molecules
must be invariant at collision, what, of course, does not
hold in the general case. For this reason, the practical
significance of Eq. (33) seems uncertain, especially, at
small values of the total angular momentum.

In conclusion, let us consider one more equation,
which was introduced in Ref. 6 and has gained some
acceptance.?8 This equation relates the off-diagonal and

diagonal ~ matrix  elements of the relaxation
superoperator, and it can be written as:
1/2 p. p 12 p
> 0" Pi By = = 0y Pi D (34)

nEm

However, one should keep in mind that in Ref. 6 the
scalar product of the form (A, B) = Tr{pA*B} in the
Liouville space was used, and therefore the matrix
elements of the relaxation superoperator in this equation
cannot be identified with the matrix elements based on
the scalar product (A, B) = Tr{A*B}, in particular,
those used in this paper, which, in fact, are the
parameters of the spectral shape. (Derivation of this
equation is given in Appendix and, in particular, it is
shown that the dependence on p; in it is fictitious).

Moreover, at such a definition of the scalar product
the equation of the type (34) is simply impossible.
Actually, in our designations it would have the form

1/2 1/2 A
Z p; 72 pe An = pi’ ° Py Ny (35)
n#Em
This equation can be derived in the only way, if we
assume
OMm= 3 o/ % Py (36)
ﬂl
and take iCDMD]]E 0 and, as a consequence,
AOMI= 0. In this case
AOMm= 3 WA o) 2 Py, =0, (37)
Hﬂl
and, in view of the linear independence of vectors of
the space of lines
1/2 p
z p Py, /\137;1 =0, (38)
771

what directly leads to Eq. (35). However, it is easy to
see that as the vector OMMis defined by Eq. (36),
]:CEIMD]]Jt 0 since
L,omMm=1.(p"%P) =
1
= 2Py -

because [H., p] #0 and [P, p] #0, what proves the
statement.

(2 P)H,) 20, (39)

3. Collisional interference of vibrational
bands. Relaxation parameters

From here on, for some simplification, the states
of the absorbing molecule are designated by indices ©
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and j, and by v we mean the set of vibrational quantum
numbers, all other quantum numbers omitted.

From Egs. (13)—(26) it can be seen that the roles
of the isotropic and anisotropic parts of the interaction
potential in the processes of collisional interference are
different: the isotropic part is responsible for interference
of vibrational bands, whereas the anisotropic part is
responsible for interference of lines within the same
band. According to Egs. (13)—(26), the isotropic part
of the potential gives a nonzero contribution already in
the first order of the perturbation theory, and terms of
the second order are simply small perturbations. In this
paper we ignore these.

According to Eq. (14), the structure of the first-
order term S;(n, mN ) is such that at n # m it can be
nonzero only for the transitions m and 7, having either the
initial or final level as a common level. Besides, because
of the presence of &-functions of angular momentum
quantum numbers, rotational-vibrational lines in bands
are not mixed. For certainty we assume that the
transitions m and 7 have a common initial level, and,
correspondingly, we have m = v Jr < viJis n
= v}j}r — v; j;. For this case Sy(n, mAl ) takes the form:

Sy, m@ ) =h"grp (B, D), (40)

where &7 (Bl) is determined by the equations

e (BD) = afy Wy jTY(s) 0oy jOBIOTYD)B G (41)

+co
ad = J dt exp (=it o, 1) COO (0); (42)
wv'/ of = h_1 (Ev'f v/) (43)

We made use of the Wigner —Ekkart theorem and
expressed the reduced matrix elements in terms of the
ordinary ones.

Note that in Eq. (41) the law of conservation of
energy at collision is obviously violated. This is a direct
consequence of the approximation of classical
trajectories used. In the rigorous approach, the excess
of energy is compensated for by the change in the
energy of translation motion. For this reason, this
consideration has a sense only at h(ov;, o << kgT, what
gives ®0O250 cm™!  under standard  conditions.
However, these conditions are not a strong restriction,
since the presence of the exponential factor in Eq. (42)
also imposes some restriction on the frequencies 0y
namely, 0y 0, T <1, where T is the mean duration of a
collision. This gives the estimate w,;, < B0 ecm™, i.e.,
vibrational bands spaced by about 30 cm~! and more,
for analysis of whose interference the model should be
refined by not using the approximation of classical
trajectories,  interfere = weakly = under  standard
thermodynamic conditions.

For the potential of the form V(¢) O1,/R", where
R = (b2 + 02 #2)1/2 is the distance between the colliding
molecules, b is the impact parameter, and v is the
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relative speed, the integral in Eq. (42) can be taken
analytically and reduced to the form

00 Coo(n)

apgy = ﬁ f()()(k[b’l) (44)

Here the nonadiabaticity k = b%’f v/ 0 and the function
of nonadiabaticity

T 1
Coo(n) foo(kOn) =~ /2,1,3 T~

x kD2 Ky o(R) (45)

are introduced, K,(z) is the modified Bessel function
(McDonald function).33 The coefficient Cy, can be
chosen so that fyo(00k) = 1.

The diagonal matrix elements are calculated
directly by Egs. (14)—(16) without any peculiarities.
They determine, to a significant degree, line shifts in
rotational-vibrational bands. Finally, let us note that
with the real potential and proper choice of the phase
of wave functions the matrix of S;(n, m® ) is real and
symmetric.

As was already mentioned, broadening and
possible interference of lines within a vibrational band
is determined by the anisotropic part of the interaction
potential. In this paper our attention is focused on
collisional interference of vibrational bands, therefore
we omit detailed consideration of the line interference
within a band. Moreover, we restrict our consideration
to the case of two vibrational bands. This allows us to
represent the matrix of the superoperator AT iy the
form of a partitioned matrix

Gy _ - [P T a O
A = , 46
‘0 « py — gy U (“46)

where pq, py, and @ are the diagonal rxr matrices (7 is
the number of rotational-vibrational lines in a band) of
Si(n, mN ), whereas ¢q and ¢, in the general case are
non-diagonal rxr matrices formed by parameters of the
second order and caused by the anisotropic part of the
interaction potential.

Hereinafter, for simplicity, we ignore the effects
of rotational-vibrational interaction, believing the
closeness of the states vr and vy to be a convincing
argument. This allows us to identify the matrices g4

and ¢, and present the matrix AT in the form
Ao _ i a0 (47)
O a py-igl

Taking into account that matrices p{, po, and a are
diagonal, this partitioned matrix can be reduced to a
block-diagonal form

D! 21("’01):1'%;“ 0 E (48)
Oo B,0

by the transformation

(F =0 -t c
D= , D = s 49
DS C D s C ( )
where it is denoted that
¢ = cosO; s = sinO; (50)
1 a T
O—Zarctanp1_p2,[®D<4. (51)

The diagonal matrix elements in Eq. (48) are
p“ = py + 2csa + s2p2 —ig =cyy — ig; (52)
922 = Py — 2csa + czpz —iqg = cyy —ig. (53)

The use of Egs. (48) and (49) in Eq. (12) gives
the following equations for the reduced matrix elements

of the relaxation superoperator A:
. 0
AT == iny J dv PO) 3 gy {c*(t = e M) +
Bl
2 =i by
+s5°(1 — e t22)}, (54)

.0
AQTQLK) =—1in, J. dv P(v) z pgl {52(1 — e i0) 4
Bl

2 i
+c“(1 — et 2)}, (55)
R 0
/\%K) =-1in, J dv P(v) 5 pgl es {(1 —e 1) —
Bl
—i(g _ "(T[K)
— (1 -y = Agr, (56)

where we have neglected the nondiagonal character of
the matrix ¢ in terms of the thermostat states, since it
is insignificant for our calculation.

As is seen from these equations, the matrix of
reduced matrix elements of the relaxation superoperator
is block-symmetric. Recall also that ¢, s and (if the

nondiagonal character of the matrix ¢ is neglected) p“

and 922 are diagonal »xr matrices. Therefore, by setting
vibrational quantum numbers, we can obtain relaxation
parameters, including cross-relaxation ones, for
individual lines in a band. These parameters depend on
rotational quantum numbers regardless that the
interference is caused by the isotropic part of the
interaction potential. The problem becomes far more
complicated, if we take into account the nondiagonal
character of the matrix ¢g. Then to obtain the relaxation
parameters for individual lines, the matrix g should be
reduced to the diagonal form by some transformation
R, exponents in Egs. (54)—(56) should be replaced by

_p1
the expression of the form Re RTIER R~!, where R™1 ¢
99 R is a diagonal matrix, and the corresponding matrix
element in terms
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of rotational-vibrational transitions in a band should be
taken.

4. Collisional interference of vibrational
bands. Spectral shape

By expanding the spur in Eq. (1) and passing to

the reduced matrix elements by separating summation

over magnetic quantum numbers, we have the following
equation for the absorption coefficient a(w):

4TTON

B 4
a(w) = - tanhT(2K+1) x

C

s 3 e A R R
isf i [

The first sum is taken over the states for which E; < E,
the reduced matrix elements of the irreducible tensor
operator of the 2K-pole moment of the molecule are
assumed to be real, and R denotes the resolvent
operator in Eq. (1). Its reduced matrix elements are
determined by the equation

R _ o Ui Kmy QUi my) Gy Kimg Qg mp)
£ fi [+ 1) Qjp + D)2

(mj,mp)

o
x 00 jp mp (0 i my) 'ORO ot jrmy (o jymy) ' (58)
Taking into account that the Liouville operator L is
spherically symmetric and the relaxation superoperator
A is diagonal relative to 1, K, and independent of Q in
the case of an isotropic gas medium,4 the reduced

matrix element of the resolvent can be presented as
follows:

() 1
Rpitgi = EI)— 7R /A\(T[K)S/ ’ (59)
s i

where the operators in the right-hand side are the
matrices of the reduced matrix elements of the
corresponding operators.

Neglecting the contribution of antiresonance terms
(this is always allowed in the infrared and higher
frequency spectral regions) in Eq. (57), we rewrite the
equation for the absorption coefficient a(w) in the
following form:

TTW
a(w) = - rlytanhh—(*)ﬁ-g(21<+ 1)1 x
ch 2
3 Y TK TK) ~ (TIK
<Im 5 (o +pp Py P REEO . (60)

n,m
The sum here is taken over 2K-pole absorption lines
included into the consideration.

Let us come back to the problem of interference of
two vibrational bands and assume the matrix ¢ in
Egs. (47), (52), and (53) to be diagonal. This makes
diagonal the blocks in the matrix of the relaxation
superoperator and, consequently, in the matrix of the
resolvent superoperator. Thus we can see that Eq. (60)

Vol. 13, No. 4 /April 2000,/ Atmos. Oceanic Opt. 305

for the absorption coefficient should be somewhat
modified:

4TTW
oa(w) = - L tanh UL QK + 1)1 x
ch 2
T+ ~ (K K
xim 3 PRI (P, 0105, (6D
n,m

since 7 and 7 now take the values 1 and 2 corresponding
to the vibrational bands. Now all significant matrices
have the block structure of the type:

~ (TK)

- (TK) DPIT[K g ~ (TKK) wi 0

P =0 o Wi Ly = ;
tps; " 0O 0

A 7 iy &+ il
AT = ﬁé1 1 ﬁ . (62)
&+l 05 +iy;

The matrix of the resolvent operator in Eq. (59)
can be readily calculated. However, the equation for
the absorption coefficient is rather cumbersome, and we
do not present it here.

By setting the rotational quantum numbers, from
Eq. (61) we can obtain the coefficients for individual
lines in the spectrum. Although in this model these
lines are not mixed by collisions, the shape of every
line differs from the dispersion contour because of the
collisional interference of vibrational bands and
becomes the dispersion one in theld + i¢0J - 0 limit.

If bands have the same strengths and are
identically broadened, then the line shape is described
by the equation, similar to the well-known Ben-Reuven
equation,3 but with small differences connected because
of the fact that the real part of the cross-relaxation
parameters in this case is also nonzero.

Conclusion

So, the spectral exchange of vibrational bands is
caused by the isotropic part of the interaction potential,
which contributes already in the first order of the
perturbation theory. Only the bands having, as a
common, either the initial or the final level can
interfere. For efficient interference, the bands should be
close enough (Aw< (B0 cm™!). Interference of
vibrational bands is not reduced to the interference of
identical rotational-vibrational lines in the bands, since
the relaxation parameters of individual lines depend on
both the isotropic and anisotropic parts of the
interaction potential, and the isotropic part of the
cross-relaxation parameters depends, though weakly, on
the rotational quantum numbers.

Interference of vibrational bands (at AwO30 cm™1)
manifests itself in the spectrum at rather high buffer
gas pressure, at which the cross-relaxation parameters
become comparable with the separation between the
bands. In this case, the following pattern of the pressure
transformation of the spectral shape can be expected:
first, some rise of the inner line wings and drop of the
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outer wings will be observed (p 05 — 20 atm); then the
line shift toward the spectrum centroid will start to
manifest itself and, possibly, some transfer of intensity
from one band to another will take place (p 010 —
— 50 atm); at the further pressure increase the bands
will become to merge into a single broadened band.
Certainly, this pattern is quite an approximate one
being only qualitative. Actually, it will be affected by
numerous factors connected both with the ignored
effects (such as, for example, line interference within a
band, violation of the impact approximation, etc.) and
with the actual values of parameters, in particular, line
positions in the bands. Particular emphasis should be
placed on the characteristic distinctions of the
interference of vibrational bands from the interference
of lines within a band. At the interference of lines in a
band, the pressure increase shifts the lines toward the
band centroid and the intensity is transferred from the
periphery parts of the band to the central part. If the
vibrational bands interfere, then the pressure increase
induces the band shift toward their common centroid.
As a result, the gap between the bands vanishes and
their outer wings drop down.

Appendix
on derivation of Eq. (34)

In Ref. 6 the vectors of the line space and the
dipole moment are defined by the following equations
(in our designations):

D= p; /2 Dif "= p '/ 0G0, M
OMI= S M;, O] (1D
"
where
My =p " Py (111)

and, consequently, the vector OMMis independent of p.
Therefore, the equality FOM=0 is valid. This
directly results in the expression
FOMM=Y FORMM,= Y CAMTAN CkITkORIM;, =
m ﬁz,ﬁ,l;
= Y IRN DRIM;, = 0, av)
7;1,;!
as a consequence, because of the linear independence of
the vectors (] we have
S TR OmM,, = 0. (V)
m

With the help of Eq. (ITIT) this can be written in the
form

S [l OmlE ' Py = 0. (VD)

m

If the scalar product is defined as (A, B) = Tr{pA*B},
an arbitrary matrix element of the relaxation
superoperator is

MR D= p; /2 pit /2 Tr{p0a0F 'O(F O 0E0)}.  (VID)

Using it in the previous equation, we can easily see
that its dependence on pi_“ 2

is fictitious:
S e Tr {(pl0F (P OG0} Py = 0. (VIID

m

Reducing it by the factor p? /2 we have

S Tr {pli'0f M AE0)} Py; = 0, (IX)

m
what is equivalent to the standard equation

Y O /70 G £ mPy = 0, (X)

m

which is the consequence of commutativity of the
intermolecular interaction potential with any function
of coordinates and, in particular, with the operator of
dipole moment.
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