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Space-based monitoring of anomalies on the Earth’s surface
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The problem of constructing an empirical model of the video data dynamics caused by time
behavior of ecosystems is solved based on the linear representation in sliding Karhunen-Loeve basis of
phenological variations in the ensemble of images. To detect unexpected anomalies recorded against the
background of natural variations of radio brightness of the Earth’s surface the adaptive Bayes’ rule of the
hypothesis testing is synthesized and the examples of algorithm operation presented.

Introduction

Appearance of the relatively inexpensive stations
to receive video information from low-orbiting satellites
of NOAA, "Meteor,” SPOT, and "Resurs” series and
similar to them allows one to formulate and solve the
problems of resource and climate-ecological monitoring
within a specific region wusing GIS (geographic
information systems) technologies. The development of
spaceborne instrumentation, increase in the number of
spectral channels, the passage to hyper-spectral and
stereo surveys, and the increased resolution of radiation
detectors allow one to solve not only qualitative
problems of nature management, but also the
quantitative ones. The class of a national economy and
ecological problems solved using the information
acquired from the space-based platforms is now very
wide, the detailed reviews in the collection “Science
and engineering results”!=4 are an evidence of that.

The opinion exists that the described methods to
solve that or another problem can be used in the very
broad scales and the period of laboratory studies is
coming to end. However, a more detailed knowledge on
the monitoring problems shows that at present only the
simplest sub-problems of the most complex problem of
space information analysis have been solved. Even a
repetition of already obtained results requires their
adaptation to specific conditions of a region, the high
culture of data analysis, and powerful software and
hardware of a GIS. One of such unsolved problems is
the absence of a description model of the seasonal
variations of landscape brightness characteristics.
Indeed, in estimating the state of various ecosystems
from observed video data one needs, first, a model of
the dynamics of seasonal variations in the optical field
of radio-brightness of the landscape formations, against
the background of which the ecological events occur.
Since the theoretical foundations to solve that complex
problem are not developed, and the created
phenological maps of seasonal variations of natural
complexes indicate only the statistically average pattern
of the landscape components dynamics, the necessity
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arises of developing empirical models of the dynamic
video data caused by the behavior of ecosystems in
time.

In this connection, let us consider an approach to
construction of the linear model for describing the
phenological time variations of an ensemble of images
and an adaptive algorithm to detect the “anomalous
outbursts” recorded against the background of natural
variations of the Earth’s surface (ES). Approbation of
the algorithm has been carried out for the half-natural
data obtained with the AVHRR device of the NOAA
satellite and by simulating the anomalies.

1. Linear model of ensemble
of video data in the Karhunen-Loeve
basis and adaptive reconstruction of the
probability descriptions of situations

At present an extensive material containing the
data on dynamics of behavior of landscape optical
characteristics has been accumulated by the stations of
receiving of the satellite information. As independently
functioning landscape units we choose the fragments
which are selected in images by the cluster analysis
algorithm as the texture homogeneous parts of image.
The result of video data automatic classification is
segmentation of images into the texture homogeneous
regions with the similar optical characteristics.!™4
Having enlarged the initial video information in such a
natural way we will describe a behavior in time not of
every separate pixel of an image but a cluster as a
whole, as an optical image of landscape fragments. Let
t denotes the time or integer number of the session of
receiving the next space image, then the recorded
collection of video data coordinated by scales for the
same terrain part at the moment ¢ has the form

Eolu, V), ..., &—(u, v), ..., E(u, v),
where &(u, v) =&, j)ix, is the fragment of a
continuous image or its digitized matrix model;
(u, v) O R2 are the values of pixel coordinates with the
brightness &(u, v) (&(i, j) are the coordinates in the
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digitized version of notations, respectively, i =1, ..., 1,
j=1, ..., m; | xm is the number of samples (elements)
of a fragment); T is the time interval during which the
landscape optical image is practically stationary (T is
the quasi-stationarity interval). A possible version of
the observations of a fragment stored on an input
medium of a more complex form, for example, when it
corresponds to the certain cluster d selected
beforehand, d = 1, ..., Q, where Q is the total number
of clusters. We will select a collection of cluster points
by the unity function 1,4(u, v) of those values (u, v) of
the pixels, which form the cluster d O Q (1,4(u, v) is
the indicator of the cluster domain). For clarity of
notations used in the expressions, we will use
continuous models of data representation assuming,
however, that the latter are digitized, and integration
can be replaced by summation within the admissible
accuracy. We will describe the dynamics of the
behavior in time of the generalized fragment by the
following linear model:

k
& (u, V) = P, v) + 3 X @i, v) +nlu, v), (1)

=1

where pq(u, v) is the expectation; {¢7(u, V)}]f’ is the
orthonormal Karhunen-Loeve (KL) basis that is
estimated over the interval of quasi-stationarity T;
n(u, v) is the &-correlated (white) noise with the
variance 02. The technique of obtaining such a basis
from the sample data and the iterative algorithm to
find successively “the most important” basis functions
are expounded in the Appendix.812 Note that the basis
functions are defined in the set 1,(u, v) of those values
of pixels {(u, v)}, which form a fragment or a cluster
dO{, .., O}

Let us call the model (1) Gaussian-like since for
the fixed vector of parameters X = x the observations
are described accurate to the Gaussian noise with the

N EO, u — 1) d(v — S)B
O O

distribution!! Sufficiently

2
o
broad class of situations can be interpreted using the
model (1), if we assume that the parameters X 00 R*
are also random and are distributed with the
probability density function oXx). In this case the
unconditional functional of the probability density
distribution of observations &(u, v) can be obtained by
integration of the Gaussian density functional over the
distribution w(x), namely

F1ECu, V)] J AnGu, v)/x] oXx) dx =

Rk

:CJ exp%—202 ” [E(u v)—xTelu, V)] dudvgw(x)dx
Rk | 1 E
(2)
where C is the constant connected with the normalization
of the functional f[.];
observations; dx = de' x .. x dxk,

g(u, v) are the centered
and the index T is

omitted; T is the transposition sign. To calculate
fI&(u, V)] we use the ideas of the adaptive Bayes’
approach’ based on the integration in Eq. (2) using the
Laplacian approximation, then

1 Hg_o*
f[&(u, v)] OC exp Q— 262 skg (@)2
« j exp EL So3 (x — x*)T(x - x*)%w(x) dx, (3)

Rk

-] [2u, v) —x*T @, W ] du dv, @

14

x* = jj é(u, v) @u, v) du dv, ()

14

where x* is the maximum likelihood (ML) estimate of
the unknown vector of parameters x, the components of
this vector are the coefficients of expansion of the

observed centered fragment g(u, v) of the image in the
basis @u, v) = {@;(u, v)}f:1}. Under conditions of weak
effect of wXx) on the value of the integral in Eq. (3) it

is natural to change the a priori distribution of
parameters o(x), when it is unknown, for the

distribution 6Xx) of the maximum likelihood estimates
of this vector, and to use, as an estimate of the integral
in Eq. (3), its sample mean over the sample

X{, ..., X;. This sample of ML estimates X{, ..., X¢ is
obtained by the expansion (5) of the data of training

material 21(14, v), ..., gT(u, v) over the quasi-
stationarity interval 1. With the allowance for this fact
the expression for the probability density functional of
observations has the form

X

1 —k
fI&(u, v)1=C exp Er@ Sium

L 1
*3 exp F ot - BT - ©
Knowledge of conditional density functions f[&(u, v)]
determined for each class d O {1, ..., O} allows one to
construct the adaptive Bayes decision rules of
recognition of situations in dynamics of movement of
the stationarity interval T within the ensemble of
observations

= arg maXQP fil&(u, V1, @)

,,,,,

where P; are the a priori probabilities of the appearance
of classes; U is the solution, U O {1, ..., Q}. The
decision rule, in this case, has the following sense: the
component exp {— ai / (202)} estimates the degree

to which the observed sample &(u, v) belongs

to the linear subspace {(pl-(u,v)}]f, which well describes
the given class, and the component
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T
i; exp % ? (x* - Q)T (x* - Q)E estimates the degree
to which the projection of the sample &(u, v) on the
subspace {(Q(u,v)}’f belongs to another points of the
training material which are disposed in this subspace.
Note that practical implementation of the algorithm of
constructing the estimating Bayes’ rule is based on the
use of conditional density functions f(&(i, 7)), but not
the density functionals because the image &(u, v) is
assumed to be digitized with a high accuracy and is
represented in a discrete form. To solve the
classification problems by the rule (7) and to search the
array of elements of the image that unexpectedly
changed their statistical characteristics in connection
with the discord of the process, it is necessary to set
such a search window of minimum dimensions, within
which the decision on the process discord is being
taken. The whole space of image is analyzed by
scanning the image field with an elementary fragment
and the recognition problem is solved accurate to the
space fragment.

Let us illustrate the operation of the algorithm to
construct the KL basis with the following simple
example. When the observed ensemble of images of the
same part of the Earth’s underlying surface (flood-land of
the Ob River and Novosibirsk Reservoir) is recorded by the
NOAA satellite (AS) with the AVHRR device within the
sliding temporal interval of T=12 successive
observations in the first spectral range. From these
images, the sliding KL basis was reconstructed by the
method considered in Appendix.8~12 The approximation
significance of each of the basis functions is
characterized by the eigenvalue A, the spectrum of
eigenvalues obtained is presented in Fig. 1a. The
quality of the approximation (4) by one or another set
of basis functions is illustrated in Fig. 1b.

Eigenvalues, A
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The plots show that the small number (for example,
five) of basis functions quite well describes the observed
statistics of the images. The estimate of mathematical
expectation and five the most significant functions of
the KL basis are presented in Fig. 2 (where a is the
mathematical expectation, b—f are the 1st—5th basis
functions, respectively). The model (1) can further be
used not only for filtration and compact description of
the phenological variations of the portraits of landscape
formations, but for the detection of anomalous
phenomena on the Earth’s surface from the video data
acquired from space by setting or estimating the
confidence intervals for the norm and “pathology.”

2. Detection and selection
of EUS anomalies by the adaptive
change point algorithm
Let us consider the problem of detecting
unexpected anomalies in the following formal
statement®.7: let us assume that the optical image of the
same part of the underlying surface &,(x, y) =
=&,(i, )iy is recorded periodically at the times
ty, ty, ..., tyy ..., t,. At the moment ¢,, the quasi-

stationary state of the fragment of observation is
described by the following model:

E(u,v) = w,(u, v) + Xr @,(u, v) +n,(u, V), (8)

where n,(u, v) are independent realizations of the
uncorrelated noise. Let us assume that the observed
fragments of images can change their properties in the
following way:

W, V) + X @u, v) =

B O(u,v)+XT ®u,v), n<r+1, situation Ay,

_DJ1(u,V)+XT¢(u,V), nxr, )

situation Ay,

where §(u, v) is the new orthonormal KL basis.
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Fig. 1. Plot of the eigenvalues (a) and characteristics of quality of the approximation of observed images (b) in the Karhunen-

Loeve basis.
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Fig. 2. The expectation (@) and five KL basis functions (b — f) obtained from the statistics of satellite images.

In other words, in the point changing process both the
mathematical expectation and the correlation properties
of the images, which are described by the set of basis
functions, change. Detection of changes in the

properties of the process is equivalent to the Hy
hypothesis making (the change points of the process are
observed) when this hypothesis is tested against the
alternative H, (the change points are absent, 7 > n).
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For testing the hypotheses H; and Hy we write the
decision rule of the likelihood ratio allowing for
independence of the observations
LG, uy) =
r—1

I_I fol El(u V)] I_I f1[£l(u 2 n f1[€l(u’ W]

= fol&(u, V)] -

H ol&(u, W

T

ﬁ exp 8—202 J

0

I=r o_1 : T 2 dudy™
exp 5‘202 J-J- C(u,v) — x5 @u, v))2du VEX

J (é;(u,v) — vt o, v))2 dudv%x
0J

1 *
X z exp@-@ N/ ?]')T (y; — g)%{

e 1 21, (10)
xS exp 5o — T () - )BHO
O 20°
j=rg#l

where the centering is carried out relative to the
corresponding  expectations, and the expansion
coefficients (their maximum likelihood estimates) y and
x are calculated relative to the corresponding KL bases
¢(u, v) and @u, v) by the formula (5). For the
correct operation of the algorithm, the stage of
preliminary training is needed. This stage consists in

finding the basis @(u, v) and ML estimates 91, . QT

from the quasi-stationary sample &;(u, v), ..., &(u, v)
T < r of preliminary observations when it is known for
sure that the state of the nature is characterized by the
situation Ay. We use the obtained decision rule to
detect the change points by moving from n backward
and taking » = n — 2 we calculate

1 n
a) Wy(u, v) 0 — %1 zz & (u, v) (this estimate
=r

makes it unnecessary to solve the complex problem on
optimizing the likelihood functional with respect to
i, v));

b) we center the realizations &,(u, v), ...,
relative to py(u, v) and po(u, v);

¢) we construct a new basis ¢(u, v) by the method
described in Appendix8-12 and obtain the ML estimates

?,, s 9,2 in this basis and Qr, Q,Z in the basis
@(u, v) obtained before;

d) moving (decreasing) » we find (p, 91) =

=arg max max L(r, Hdy);
{r} @)}
e) finally, we test the hypotheses Hy and Hy for

&, V)

H;
W 91, L El1) Z 1 which have been sought.
Hy

In a similar way the algorithm with moving along

a sample forward is constructed.
Taking into account that the realization of such
algorithms for detection of change points is too
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cumbersome we consider a more simple version
connected with that in the model (9) only the
mathematical expectation changes at the change points,
while the correlation of the process remains unchanged
and is described by the set of the KL basis functions
@(u, v). One more simplification is connected with

that the averaging in the expression for the density
functional (2) is carried out using improper distribution
(x), which is set on the extending data medium as a
constant A inessential for the decision rule

J exp Q—#(x = x9T G = x)ft) dx 0
Rk

1 1
Diiiriz j exp %r ﬁ(x -x9)T (x - x*)@dx ac.

A

In this case, the general form of the expression for
the density functional has the following form:

fl&(u,v)]10
OCexp ET_ZLOZ J.J. E(u,v) —pu,v) —x*¢(u, v))2§dudv,

where x* is the maximum likelihood estimate

determined from the expression (5). The logarithm of
likelihood ratio in this case is expressed as

N7, py) =

IZ %% jj (&, v) —po(u, v) —x] (p(u V)12 dudv -
- g1

] 1 — i) =xiT o dudv 2=
1(1 E

(u, v) = polu, v) n
_ ” Ehu v 02lzlou v Hz(uv) . (p(u o) -

d

14

(u. v) — qH,
vy — R W ol Vg, B G
2 U] DHO

Let ACu, v) = py(u, v) — Yo, v) then

N, (7, b) 1
OA(u, v)

X
n—r+1

xS 1€, v) = pou,v) = x;T @u,v) = Bu, v =0,

I=r

Hi(u, v) = i+1 z (£, V)~ x;" @u, V)], (12)
1 n
Fi(u, v) = Pa— Er &u,v),
since

1 LT
a— > x; @u, v) 00.
I=r
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Fig. 3. Ensemble of "homogeneous" images (a); a nonstandard
increase of brightness detected and isolated by the

algorithm (b); a decrease of brightness detected and isolated
by the algorithm (c).

To illustrate the algorithm operation the anomalous
distortions were artificially introduced into the newly
observed images. These were in the form of an increase
in the brightness level (two times exceeding the
background) and a decrease of the brightness
level in the system of fragments with 10 x 10 pixels.
Then these distortions were detected by the decision
rule (11) at the steps ty3, t14, and ty5 and the position
of a fixed anomaly was localized. Figure 3a presents the
ensemble of observations on the quasi-stationarity
interval, and Figures 3b and ¢ present the anomalies
detected correctly by the algorithm (they are shown
outside the frame of analyzed fragments).

Conclusion
An advantage of the proposed approach is that
simple generalization of the KL representation8-12
allows one to construct linear models for vector images
with the components obtained in several spectral ranges.
It is preferable to take the probability model of the
sequence of observations (8) and (9) in constructing the
decision rule to detect the change points using, for
example, the Johnson parameterization.
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Appendix
Linear models of multidimensional fields in the
Karhunen-Loeve basis

Processing of multidimensional —experimental
information widely uses the linear models of the data
representation in orthogonal bases. Among such bases,
the Karhunen-Loeve basis (which is known in the
publications in meteorology, hydrology, oceanology,
and atmospheric and ocean physics as the basis of
empirical orthogonal functions) is preferable. In this
case, the approximating series has the least number of
components and preserves the high accuracy of the data
approximation.8-12

The tendencies existing toward the increase of the
dimensionality of recorded information (in particular,
due to appearance of multi-zonal aerospace survey) and
the problems of combined data processing which arise
in this case make the problem of synthesis of linear
models of multidimensional observations described by
the random vector fields to be very urgent. In this
connection, we consider below a sufficiently general
problem to represent vector fields of vector argument
and to find the corresponding Karhunen-Loeve basis
based on the experimental data and propose the
iterative algorithm of seeking approximate solution to
this problem. We will assume that the random vector
field (for simplicity and without loss of generality, it is

&(w) = (21(u), . Es(u))T of the vector
argument u = G, ., w)T (s and v are, respectively,
the dimension of the function &€(.) and the dimension of
the argument u, T is the transposition sign) is set in the

centered)

domain D = {u: uj < u' <uj, i=
of N samples &(uw), ..., Ey(uw).

Let us present the vector field in following way
(it is not unique, generally speaking!!):

1, ..., v} by the array

&(u) = lleim > X g(u), (A1)

~% =k

where the limit is interpreted in the sense of
convergence by norm in the space of realizations of a
random vector field; {@(u)}, are the vector basis
functions of the vector argument. Random coefficients

{X"}; are determined from the condition of root-mean-
square deviation minimum

2

k
g=M| | G -3 Xqw)| | , (A2

=1

where M is the sign of the mathematical expectation
operator; | O is the Euclidean norm in the space of
observations. If we impose the orthonormality
conditions on the basis functions {@;(u)};

(@, 9 = J G gwdu=5;  (A3)

D
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where  §;; (i,j=1, ..., k) is the Kronecker symbol,
du = du' x ...

product, then the representation coefficients {Xi}k
minimizing (A.2) will take the form

x du’, and (-, ) is the sign of scalar

Xi = (g, <p,->:j ) g(u)du, i=1, ..., k (A4)
D

The existence of the limit in (A.1) and complete
orthonormal sequence of the basis functions {@(u)}. is
provided by considering only such processes &(u),
which satisfy the following condition: for every fixed
set of the values of vector components ulO D

M [EN(u) E(u)] < w. Tt is natural also to find the basis
functions {@(u)}, from the conditions of minimum of
the root-mean-square criterion of quality (A.2) of the
vector field approximation &(u) by a segment of the set
(A.1) which contains %k terms. Solution of this
variational problem on seeking the extremum that is
conditional in the sense of constraints (A.3), included
in the functional (A.2) using the Lagrangian factors,
causes the following homogeneous Fredholm equation
of the second kind

j MIE(W) ET(W)] @v) dv = \p(w),  (A.5)

D

where A is the Lagrangian factor, and the indices of
basis functions and A are omitted since all the equations
are  equivalent. The unknown basis {@(w)}
corresponding to the largest k eigenvalues {A;} is found
by the solution of the equation (A.5), however, in the
general case it is not a simple problem. Having at a
disposal the collection of N samples &;(u), ..., Ex(u),
which characterize “sufficiently brim-full” the general
collection of all realizations caused by the random field
&(u) it is natural to use the following sample estimate
of the correlation function:

N
MIE@ ET0] 07 3 & E'w. (A6
=1

In this case the problem (A.5) is essentially
simplified (the case of the degenerate kernel in
(A.5)12), Really, substituting (A.6) into the integral
equation (A.5) we obtain

N T, O O
j Y & E(W) @v) dv = A@w), (A7)

p /=

where A = NA and A and @(u) are the estimates of the
corresponding A and @u). Let us introduce the
following designations:

J E]T(V) (Dp(v) dv=ci, j=1, .., N,
D
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then from (A.7) we obtain expression for the basis
functions

M=z

o =7 3 o &), (A8)

Jj=1
where the coefficients {c/}y are not yet determined.
Substituting the parameterized expression (A.8) of the

0
basis function @(u) into the equation (A.7) we obtain
the equality

1 N N N
szmzujﬂwmwm:zuywwAm
j=t =ty 7=t

Let us calculate, in this expression, the scalar
product (&;, &) over the realizations of the random
field & (uw), ..., Ey(w) with a;; to denote it, then (A.9)
takes the form

=1

NE()@N ' ' 0 (A.10)
(u cta;—c/d=0. .
j; ’ gz ! g

Because of the linear independence of realizations
of the random field in the probability sense and because
of the property of linearly independent, with the scalar
product, elements of space, the equality (A.10) holds
under the condition

claj;—ci=0, j=1,.., N. (A11)

7

~
I

>l—
Mz

Using the matrix representation the expression
(A.11) reduces to the following form:

(a;))c = ch, (A12)

where c=(ci, A (aj;) is the Gram matrix
N xN; A= (! 51])

Thus, when the structure of basis functions as a
linear combination of realizations of a random process
was determined, the coefficients of these linear
combinations were obtained by solving the complete
eigenvalue problem for the positive definite Gram
matrix (a]-i) of the order N, and it is already the
problem that can practically be solved using the
numerical methods of algebra. It is not difficult to test,
by substituting the expression (A.8) into the equation

0
(A.3) that to normalize the functions {@;(u)}; allowing
for the obtained values {c'}y it is necessary to replace A

by \/Z in Eq. (A.9) for basis functions.

Constructing linear models (A.1) using the
Karhunen-Loeve basis, which is optimal in the root-
mean-square sense, requires solving the equations
(A.12), as a rule, by numerical methods. However,
difficulties of practical realization hamper broad use of
this basis, since in this case it is necessary to solve the
complete eigenvalue problem for the positive definite
matrices when their order exceeds 102. This normally

makes one to refuse from using direct methods to solve
the problem of finding the Karhunen-Loeve basis
(A.12) and to construct iterative algorithms. These
algorithms, while reducing the number of operations in
obtaining approximate results cause the optimal
solution only asymptotically. Another advantage of the
iterative algorithms is that they allow one to find, in
the first instance, “the most important” basis functions
the number of which can be small.

One of the approaches to overcome this difficulty
at the expense of refusing from the optimality in the
root-mean-square sense is the algorithm enabling one to
construct an adapted basis, !0 which uses the idea of
orthogonalization of a sequence of linear-independent
functions under the condition that the choice of the
next function satisfies certain criterion. In this case, the
uniform approximation of the process by its linear
variety with small dimensionality is carried out. The
iteration character of the procedure to construct this
basis allows the algorithm for transformation of spaces
with large dimensionality up to 105 to be used.

Further, we propose an iteration algorithm for
constructing a basis adapted in the root-mean-square
sense (ARMSS basis). In this case, the choice of the
next basis function is based on the minimization of the
root-mean-square criterion of quality (A.2).

Let us approximate the realizations of the initial
description &(u) by the elements of a linear subspace
Gy, (containing all linear combinations) which is set by
the orthonormal basis {¢;(u)} in the following way. As
the next basis function ¢3].(u) (G =1, .. k) we take
that function from the s; orthonormal functions ¢S].(u)

obtained by  the process of  Gram-Schmidt

orthogonalization!? ~ of  the  sample  functions
51(11), R EN(U)
0] S*].(u)
b (w) = ——,
! 2¢:j(u)2

1
¢:j(u) = Es]-(u) - z (Esjy ¢l) ¢i(u), (A13)
=1

when

Ai=MI[E, ¢)%] = max MIGE, ¢;)°1, (A.14)
Sj'

si=1, ., Ny =1, .., k; k<N,

where the sample estimate associated with (A.6) is used
as the mathematical expectation. The process of seeking
the basis functions is finished at the k-step once the

preset accuracy si of the approximation of random
vector field by the linear combination of % basis
elements from Gy is achieved. In this case, following
the theorem of construction of elements &(u) of the
Hilbert space at G, we have
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k
Ew Oy Xioj(w),

j=1

(A.15)

where {Xi}k is the collection of random numbers
determined by the formula

X =@ o), j=1,.., k

The accuracy of approximation in the expression (A.15)
is determined (practically, the estimates M[0O are used
on the same sample) by the following way:

(A.16)

k
g =MI[E DI - YA, (A17)

j=1

where A; are ordered according to the magnitude
decrease (A{ = Ay =... = A\,) because of the construction
reasons, and maximally, as far as it is permitted by the
ensemble {§;(u)}y, “exhausts” the root-mean-square
error € of the approximation of the ensemble {£(u)} by
the linear variety from Gyj. As is known, the optimal,
in the root-mean-square sense, basis {@(u)};, with the
corresponding spectrum of eigenvalues {A;}; of the
Karhunen-Loeve expansion is found by the optimization
of the criterion (A.17) over {@(w)} allowing for the
orthonormality property of the latter. The same basis
{¢(w)}, is caused by the problem of a successive
maximization of the positive definite quadratic form
(A.14) over the spheres of unit radii in the subspaces,
which are orthogonal to the functions {¢;(u)}, obtained
by the procedure (A.13), j =1, ..., k, @ = 0. The latter
circumstance points that the ARMSS basis {¢;(w)}
obtained by the algorithm (A.13) and (A.14)
asymptotically, with the increase of N, becomes the
Karhunen-Loeve basis under certain assumptions on the
ensemble {(u)}. Really, the considered algorithm is, in
fact, based on the stochastic principles of search of
extremum!2 with the peculiarity only that the “test”
functions in the considered case are the elements of a
sample. Therefore, for the convergence of the search
procedure it is necessary that the function of sample
value distribution be positive along the “direction” of
unknown solutions. If this fact is not established a
priori, then we can judge on the quality of the
obtained solution by the magnitude of estimate of the
approximation error (A.17):

1 N k
k=p§§g§—;@¢yﬁ

Note that the algorithms obtained for continuous
fields are correct for the fields set by separate samples
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on a discrete, regular or stochastic (but fixed) network
of observations. However, in these cases, the
integration is replaced by the corresponding summation
over the set of points, where the realizations of field
are recorded. It is simple to perform some other
modifications of the algorithms which are connected
with the representation of fields over the domain D
with the variable boundaries, sliding boundaries or to
separate out from the linear model (A.1) the temporal
variable in the following way:

k
Eu, 1) = 5 Xi(t) g(u).

i=1
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