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Nonlinear optics of field with high angular momentum
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One of the main methodical problems of nonlinear optics of a field with high angular momentum,
namely, spatial dispersion of the magnetic moment of a unit volume is discussed. It is shown that such a
structure appears in ordinary quantum calculation just because of the high angular momentum of field.

1. The density of the angular momentum m of an
electromagnetic field is proportional to the radiation
intensity I, and if we assume that the field momentum
is created only by I, then, as elementary estimates
show, it turns out to be comparable with the angular
momentum of a molecule (that is, its value is about the
Planck’s constant #) for fields with the strength
exceeding 109 V /cm. This sends us to search variants,
when the field possesses moderate intensity while
having high angular momentum. The solution (in the
sense of “existence and uniqueness”) is given in Ref. 1
based on analysis of the problem by applying the rules
of quantum electrodynamics.

Assuming the field to be set by a preset current,
we believe that, according to the results of quantum
optics,23 its wave function is a coherent state with the
index o = a(k) which is the function of the wave
vector k. The basis vectors k should form a cone with a
small angle at its vertex, and |dQ,/ 99| should be large
enough. Here ¢ is the polar angle between k and the
cone axis, and  is the phase of the complex parameter
o=|alexp GY). It is just the large derivative of
that leads to high angular momentum of the field,
whereas the field intensity is determined only by | a |.
The possibility of generating such a field was discussed
in Refs. 4—6.

Now we can imagine the outline of the
electrodynamics of the field with high angular
momentum.

First, as such a field interacts with molecules (we
mention molecules only for definiteness), the latter
acquire (according to the well-known conservation
laws) mechanical momentum, whose appearance
necessarily implies (see, e.g., Ref. 7) the magnetic
moment M of a unit volume. In the case of optical
frequencies it is usually ignored, but now the current
density j in the Maxwell equations should be written as

j=%—lt)+crotM 1)

with the dipole moment P of the unit volume (¢ is the
speed of light).
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Second,
m = [r(E x H)]/(41) (2)

with the strengths E and H of the electric and magnetic
fields at the point r, and of course

M = M(m). 3

From Egs. (1)—(3) it is clear that optics turns out
to be nonlinear even at quite moderate I values.

Third, it is clear that Eq. (3) cannot have the
structure M(r) Om(r), because |m| - o at |r| - oo. It
also cannot be assumed that M is proportional to the
total field momentum (integral of Eq. (2) over r),
because the Maxwell equations are local. The variant
like “spatial dispersion”

M(r) = J dr' F(r — r') m(r') (4)

with the corresponding function F (tensor in the
general case) ought to be consistent.

2. The construction presented by Eq. (4) is a
subject of semi-classical electrodynamics, in which the
Hamiltonian of interaction of field particles

N €a egf 2
Hop =— ; U_aC Pa A(l‘a, t) + % 2“a62 A (r(l’ t) (5)

appears. In Eq. (5) e,, Yy T4 and p, =
the charge, mass, coordinate (as an argument of the
wave function), and operator of momentum of a
particle with the index a; A(rg, t) is the vector
potential of the classic field.

Usually, the spatial dispersion is caused by
interaction of molecules from different elementary
volumes, while here, the non-local spatial coupling (4)
occurs due to high momentum of the field. However,
formal consequences are the same: we should refuse
from the long-wave approximation in Eq. (5), by using
instead its “phase transformation” following known
(with only insignificant variations) scheme.89 Then
the following expression is to appear:

—ihgrad . are
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Hop = — > egr, E(r,, t) —
a

~ 50 3 T (ry X HGe, ) )

The terms in Eq. (6) are classified as description
of the field interaction with the electric and magnetic
dipoles. The electric quadrupole has the same order of
magnitude as the second term in Eq. (6), but its
influence can be neglected. Actually, it does not
contribute to Eq. (3) since its product with the
“magnetic” terms does not exceed the accuracy of
Eq. (6), and the electric dipole approximation is quite
sufficient for calculating P = P(E).

Calculations are further continued according to
typical (see, e.g., Refs.9 and 10) procedure of
quantum mechanics for nonlinear optics. The term
proportional to H appears in the first order of the
perturbation theory in terms of the operator (6). It is
just this term that determines the dependence of j on H
for the “ordinary” field, and therefore it is
insignificant. We need to follow up how the
combination (2), in the form (4), appears; for that we
need the second order of the perturbation theory. Then
(accurate to a constant factor) the parameter (3) is

121
QLlj J dt4 j dty Sp p [M'(t), I:[E)R(t1) [tfé)R(tg)J =

— 00 - 00

%éjdm tfdtZSppx

- -

il ~ Ho Up H=1 tzA
[e zh Meih ,e zh HOR(t1)e ih

H
H()R(tz)elh ]

(D)

Here ¢ is time; p is the Gibbs density matrix of the
system of particles unperturbed by the field; the prime
denotes the transition to the interaction representation

. Lo Lp
Ki(t)=ein "R ein®

for the operator ]%AWith the Hamiltonian of the system
of particles Hy=T + V (T is the operator of kinetic
energy; V is the potential energy); finally we have that

M= > &(r—r,) Za (r, Op,) €))
P Hq
is the density operator of the magnetic moment (3 is
the delta function).
It is clear that, after substitution of Eq. (6) into
Eq. (7) the subject of analysis are the terms including
the products of E and H. Expressions with E2 and HZ2
are the second-order corrections of the perturbation
theory in Eq. (1), which are insignificant at low
intensity. Let us recall here once more that it is the
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angular momentum of the field, which has high value,
just because of the assumptions on the field structure.

A prerequisite for the following simplification of
Eq. (7) is the almost obvious statement that interaction
of the field having high angular momentum and a
molecule results in an intense rotation of the latter.

This allows us, first, to ignore the commutator
Eq. (8) and Ho and, consequently, assume M’ and
exp (£(t/in)H,) to be permutative (nevertheless, the
need in the approximation M’' OM does not follow
herefrom, since it proves to be too rough for the
considered equation). Actually,

[5(r —r,), Hol = [3(r — 1), T + V] = [8(r —r,), T] .

However, the flux of particle density through the
boundary of an elementary volume, which is obviously
zero at only rotation of particles, is connected with the
commutator [5(r — r,), Ho] (as it is proved in statistical
physics!!). Then, permutability of (r,,) and T is
checked directly, and V =const is a good
approximation for description of rotation.

Now we have the possibility of placing the
exponential operator underlined by one line in Eq. (7)
outside the square brackets [ ] sign, use its exact
commutation with p, and place it outside the [ ] sign in
the expression under the Sp sign. Then the combination
appears
_t—t g

_t-t o ~
Hogp(ty) e i

ﬁOR(t1) e i

0

Similarly, but in the reverse order, we can proceed
with the exponential operator underlined by two lines.
Thus, we have the expression

_t1ft2 iy _t1ft2 il
e ih HOR(t1) e ih

’ I:IOR(tz) .

The first or second variants are used to remove the
exponential factors from the operator (r, E(r,, t)) in
the case that this expression (in the product with
H(r,, t)) is on the left or right-hand side. In the other
factor, after a simple vector transformation, we derive
M, — the term from Eq. (8):

tA t 2
e O H(r, ) M, e " = H(ry(6), £) M.

At a sufficiently intense rotation it can be treated
as a classic one with the initial value r,, and the
“trajectory” r,(t) can be presented as r, + “something”;
this “something” = 0 (size of a molecule), if we deal
with rotation. However, the spatial coordinate enters
into H as k Or with k O1/(wavelength). Therefore,
the value k multiplied by “something” can be ignored,
and H(r;,) - H(r,) in the last expression.

The meaning of such a transformation is rather
simple. The consequence of Eq. (2) is m = (r E) H -
- (r H) E, and M having oriented by H is connected
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only with the first term. However, it is just it that
appears because of the above actions.

After the above simplifications and calculation of
Sp in Eq. (7), the subject of analysis become
expressions of the form

Y Pt € nimt By, anng(w') e W) P
n{ ... n4

n3n4(°~)”) x

x e~ 10"t -1, — 1) Gy elWysniTy @~ 10X, 9)

As to Eq. (9), the detailed explanation should be
given (we wrote down here only one term arising in the
commutator from Eq. (7)). .

The subscript n numbers the eigenfunctions of H,
P, is the diagonal matrix element of p; wy,, = (g, -
—¢,)/h with g, — eigenvalues of H; exponents with
W,y follow from the interaction representation. In
Eq. (7) the replacement of the variables ¢y = t; — 1y
and ¢y = t — 14 were made in turn, then E(¢) H(¢) was
expanded into the Fourier integral (with the
components E(w) and H(w") and integration over the
frequencies @' and w"). Thus appear the exponents with
' and " in Eq. (9) and the Fourier transform of M(¢)
itself with the frequency w is considered. This is
demonstrated by exp (iwxt). The designations B,,;, C,y,
D,,, and G, are used for the matrix elements of the
operator  (8), (ra E(r,, w)), one of the vector
components of H(r,, w"), and the vector (r, x p,).

+ o0 [e] [
Certainly, Eq. (9) is under the sign Jdt Idn deQ,
— 0
what, as usually, leads to singular functions giving rise
to restrictions w"=-w', W+w,,,=0, and W' = W,
+ oo

on summation in Eq. (9) and integration j dw' dw”

arising after transition to Fourier transform. Now
E(w") should be written instead of E(w'), where the

bar denotes complex conjugation. The appearance of
combination

z (Cl))nzn/l Gn4n1 pn1 Bn1n2 =
nynony

S (CD)yyy Myny = S, 1 (CD) (10)
nony
is also clear.

It is a matter of course that, M from Eq. (10)
possesses, according to its definition and “rotational”
origination, all the attributes of a second-rank tensor,
and for isotropic media it is naturally diagonal.
Therefore, CD transforms into the expected
combination (r E) H.

Besides, we should take into account summation
over particles in Eq. (6). So, the result of previous
transformation is

> (ra E(ra)) H(r,) Mg, (11)

a,d
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where MM, is the term of the matrix element of M from
Eq. (10) corresponding to the subscript a. We should
assure that the preference in Eq. (11) should be given
to the terms with @' = a.

Let us denote by x and y the coordinates of
particles with the indices @ and a'; X(x, y) are the
wave functions used in calculation of matrix elements; f
and g are the parameters entering into Eq. (10). We
need to compare the integrals

J dedy X(x, ) f(x) g(x) X(x, y)

and
J dedy X, p) f(x) 9(yp) X(x, y)

corresponding to the variants ¢ = @' and a # a'.
Since we deal with finite rotation, which is a sort
of motion, we can refer to the oscillation theorem.!? In

the first case I dy X(x, y) X(x, y) refers to one particle

and has, say, N oscillations with N being large and
rotation is rather intense. However, in the second case
the number of oscillations increases significantly, what
certainly leads to significant decrease of the integral.
Further, it should be explained why does M, in
Eq. (11), where now @' = a, have the argument r — r,.
The corresponding arguments although look as only
qualitative, but are rather standard. First, r — r, enters
into the definition (8). Second, at only rotation of
molecules (which, recall, is firmly associated with the
high angular momentum of the field) translational
invariance should necessarily take place. Finally, the
same rotation of molecules allows us to use classic
language for its description, in which Sp in Eq. (10)

transforms into J dr, (j dr' after the appropriate

replacement of variables).
Let us return to Eq. (10) and pay attention to the

fact that M depends on w and " (or ), and they
enter it not independently. As a consequence of the
well-known reasoning on the stationary state of
statistical processes [Sp in Eq. (10) (1)] is the
statement that the corresponding argument is finally
(00— w).

The result of the above procedure — derivation of
the parameter (3) — can now be represented by the
equations

+ oo

M(r, t) = J M(r, @) e i dw,

- 00

M(r, w) = (12)
= J doo’J dr Flw- o, r - r) (r E(r,w)) H{I, ),

which are just those that correspond to the structure of
Eq. (4). Of course, it is now simple to represent F in
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terms of numerous matrix elements and other quantum
characteristics, but such equations are wuseless for
computation. Usually, parameters similar to F are
declared empirical, when the form of equations they
enter in is already found.

So, along with the Maxwell equations (in which
P is linearly related to E) Egs. (1) and (12) form
nonlinear optics for the field possessing high angular
momentum. It is characterized by not necessarily high
intensity, the presence of the magnetic moment of a
unit volume, and of spatial dispersion. The latter owes
its origin to peculiarities of interaction between a
medium and a field with high momentum.
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