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A mathematical model of pollutant sedimentation on the surface is considered with allowance
made for climatic characteristics. Transition probabilities are constructed based on the Fokker —Planck —
Kolmogorov equation, which is solved numerically. Specific calculated results for Irkutsk are presented,
and the influence of emissions from Irkutsk industrial plants on the water area of Southern Baikal is

estimated.

Pollution of the environment with anthropogenic
emissions has a negative effect on living organisms, soil,
buildings, architectural monuments, and constructions.
It causes metal corrosion and decreases atmospheric
transparency. Under the effect of gravity, pollutants
deposit onto the surface (soil, water bodies) from the
atmosphere. Surface run-off causes secondary pollution
of water bodies (partial washout of pollutants from
soil). This is why estimation of pollutant flow from the
atmosphere to the surface is of great importance. One
of the means of such estimation is mathematical
simulation that permits one to find the optimal variant
from the viewpoint of minimizing anthropogenic load
by simulating possible situations on a computer.

A light pollutant in a homogeneous medium is
described in Refs. 1 and 2. In this paper, we consider a
passive  pollutant  characterized by a  certain
sedimentation rate in an anisotropic medium. The
diffusion equation for this pollutant has the form
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where s is the pollutant concentration; wu; is the
component of medium velocity along the corresponding

coordinate x; (i= 1,3 ); wg is the gravitational

sedimentation rate which is different for particles of
different fractions; F is the intensity of pollutant
sources; ¢ is time; v;; are the coefficients of turbulent
diffusion. Repeating indices mean summation.

Let us represent s, u;, V;;, and F as a sum of mean
values and deviations. Then Eq. (1) takes the form
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Transforming the right-hand side of the last
equation, we obtain
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Let us now average the last equation using the
properties of mean values:
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As in Refs. 1 and 2, to construct the probability
model, we turn to the second Kolmogorov equation
written in the phase coordinate s:
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where p = p(t, s) is the differential distribution law for
os 1 07
A= % and B= 2 ot
respectively the mean rate of variation of the mean
concentration and the intensity of random oscillations
about this mean value in the interval ¢ O [0, T].
The initial state is p(0, s) = po(s). The boundary
conditions are as follows:

the parameter s; are
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The problems of solvability of Egs. (3) and (4)
under certain restrictions placed on the coefficients A
and B were considered by Kolmogorov in Ref. 3. In
particular, proofs were performed for the so-called
Bachelier case when A(¢) =0 and B(¢) =1, i.e., the
Kolmogorov equation is reduced to the classical
equation of heat transfer (at s = x), for the case when
the coefficient A varies linearly and B is an arbitrary
constant, and for the case A(¢, x) = 0 and B(¢, x) = x.

The unknown values in Eq. (3) are p, A, and B.
To close the equation, let us find A and B. To
determine the coefficient A, we perform the following
calculations. First, Eq. (2) is subtracted from Eq. (1):
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Transforming both sides of the last equation, we
obtain
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For an incompressible liquid, every summand in
parentheses vanishes because it is divergence of the
velocity field and its fluctuations.

Following Refs. 4 and 5, we can neglect the
influence of a passive pollutant on the velocity field of
the medium in the linear approximation, i.e., the
turbulent velocity field is assumed to be independent of
pollutant concentration. Let us introduce a designation

qe= uis, (6)

where s is unknown.

Further, as in Ref. 1, Eq. (5) is integrated from ¢
to t + 1, where ¢t 2T (1 is the Eulerian time scale), in
order to satisfy Eq. (6). Then both sides of the resulted
equation are multiplied by wu,(t + 1) and averaged
within the interval T — 1 (T >>1):
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The first summand in the right-hand side of the
last equation vanishes because the integrands wu,(t + 1)
and s'(¢) are not correlated. Further, let us use the
method of recursive inclusions.4> As a result, we obtain
the first approximation for Eq. (6):
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Substituting Eq. (8) into Eq. (2), we obtain the
closed equation for mean concentrations:
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Thus, the equation for the coefficient A is derived.

Similarly, we can obtain the approximation of an
arbitrary order. The error of the first approximation
was estimated by comparison with analytical solutions
(it does not exceed 20%).
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To find the coefficient B, let us turn to Eq. (5).
Multiply both its sides by 2s' and add to the equation
of continuity of incompressible liquid (whose sides are
pre-multiplied by s'2). After averaging, in the first
approximation we obtain

B
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Pulsations of the sources F' are neglected in Eq. (10).
This can be also done in Eq. (9).

The obtained coefficients A and B close Eq. (3).
However, Eq. (9) for the coefficient A is also of
interest, as it permits one not only to calculate the field
of mean pollutant concentrations in commonly accepted
ways at typical or averaged situations but also to take
into account fluctuation effects of the medium.

The obtained closed equations (the Kolmogorov
equation and that for the coefficient A) with the
corresponding initial and boundary conditions are
solved numerically in the Cartesian coordinate system
using the method of fictitious areas, which allow
calculations with an arbitrary function describing the
relief. For time quantization, the Crank —Nicolson
scheme and two-cycle multicomponent splitting method
can be used.6

Without changing the essence of the matter, for
brevity we write Eq. (9) in the form
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where x = xq, y = x9, and z = x3 are the axes of the
Cartesian coordinate system; x and y are directed

horizontally, z is directed vertically upward; C =
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where Cj, is the background concentration; V, is the
projection of the velocity vector onto the external
normal to the boundary surface; B is the coefficient
describing the interaction between the pollutant and
the surface.
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Let us consider the method for solving the
problem presented by Egs. (11) and (12). Since the
antisymmetric form of the operator is preferable when
constructing energetically balanced finite-difference
approximations, Eq. (11) is transformed, using the
equation of continuity for the incompressible
atmosphere, to the following form:
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Let us introduce a nonuniform grid with main
nodes x;=1Ax i=0,1,..,1+1), yi =7y
G=0,1,...,7+1), zz=0z, (k=0,1,.., K+1),
and t,=n At (n=0,1, ...) and the steps Ax, Ay, Az,
and At. We also use auxiliary points xiry,2, yj+1,2,
Zp+1 o2 situated at the center of the main intervals. Let
us designate

Clin= Clxy, yj 2p t); By = (Dzpy + Azg) /2;
Uirt 25k = i j ke + Ui j 1) /25

Vijrt 2k = @ijri ke + 00 1) /2
W; k1,2 = (@i et + Wi5 1) /2.
The finite-difference analogs of the operators are
the following:
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Using the Crank—Nicolson scheme at every
fractional step [t,, t,+1], we can write the splitting
algorithm in the form

B:- L= L77LHC”+M/4 1 H:- _ % L;;HCn+(n271),/4717

m=1, 2, 3;

Cn+1/4 _ Cn*i/4 + At q)n;
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B_: +_ LS mHCn-*-m/zi B:- _ & LS mHCn+(m 1)/4

m=2, 3, 4,

where E is the unit matrix.

The difference approximation of the problem (3)
and (4) is also constructed based on the Crank—
Nicolson scheme. Let us designate

sy =Y bsy (y=0,1,2,..,F+1),

Dsyiq = Syt = Sy, ssy = (dsy + dsyiq) /2,
n n n n
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The boundary condition pg is determined from the
condition of fulfillment of the probability measure (4)
by the trapezium rule.

At the right boundary of the integration domain
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Thus, the finite-difference approximation has the

form
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These finite-difference schemes are absolutely
stable, and they are second-order approximations with
respect to time and coordinates.

For numerical realization of the finite-difference
equations, nonmonotonic simulation run? is used.

Thus, Eq. (9) describes the dynamics of mean
pollutant  concentrations  with  allowance  for
fluctuations of input meteorological information, and
Eq. (3)  estimates the probability of these
concentrations (including the excess above the given
norms) for the considered time interval and permits us
to calculate the flow II of pollutants onto the surface:

k
II= z Si wgi,
=1

where k is the degree of particle dispersion.

Numerical  solutions were tested at the
simplifications, which were used in the known
analytical solutions. Besides, the calculated results
were compared with the data obtained from processing
of samples of stable snow cover.

Let us consider particular estimates of
sedimentation of solid particles onto the surface. It is
well-known that aerosols emitted by anthropogenic
sources are considerably polydisperse, and the
polydisperse  structure determines their physical
properties. A particle size distribution is usually
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described as a part (per cent) df of particles whose
radii lay in the interval (r, r +dr), i.e., df = f(rdr,
under the condition that the particle size distribution
function has the property

(=)

P(O<r<ow)= J f(nNdr = 1.
0

Usually, the part of aerosols particles, whose radii
lay within finite intervals, is experimentally
determined, i.e., histograms are obtained instead of
continuous probability curves. However, emissions are
nonstationary in practice, and thus it is impossible to
determine the particle size distribution exactly. So, the
distribution is approximated by some analytical law.
Theoretically, we can derive an equation describing all
aerodisperse systems. However, this equation would
contain a great number of coefficients, and the fit of
these coefficients for every system would not be
expedient. This is why the proposed equations contain
as small number of coefficients as possible. As a rule,
two coefficients are used: particle size and the degree of
aerosol polydispersity. The Roller and Rozin—Rammler
equations etc.8 are examples.

Kolmogorov® showed that, proceeding from simple
hypotheses about the character of breaking of solid
particles, it can be proved that the particle size
distribution asymptotically tends to the lognormal
distribution as particles become finer. That is why we
used the lognormal law to calculate the distribution of
solid particles emitted by Irkutsk power plants into the
atmosphere. Dusting of ash dumps, open pits, and other
plants was ignored in our calculations. There are more
than 300 boiler houses in Irkutsk, and 97% of them
have smoke stacks from 8 to 35 m high. The diameter
of emitted particles is <4007 m, and the average
density is 2800 kg /m3. The gravitational sedimentation
rate was calculated for every fraction by the Stokes
equation

wg = (2p, g 72)/ (9,

where ¢ is the free fall acceleration; P is dynamic
viscosity of the medium; p, and 7, are density and
radius of the particles. The gravitational sedimentation
rate (calculated by the Stokes equation) ranges from
0.001 to 0.2 m /s depending on the particle size.

More than 80 000 kg,/km? of pollutants deposit
annually onto the underlying surface in the north-
western part of Irkutsk (Fig. 1). This is the most
polluted district of the city. In the south-western
district, Novo-Irkutskaya power station provides the
most part of thermal power. The smoke stacks of this
station are 180 and 250 m in height. Therefore, its
emissions are in the atmospheric boundary layer. Only
large particles deposit near the station; other particles
are transported very far by air flows. Figure 2 shows
the estimate of annual accumulation of heavy particles
(emitted by Irkutsk power plants) on the surface of
Southern Baikal.
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Fig. 1. Accumulation of an anthropogenic polydispersive pollutant on the underlying surface in Irkutsk during a year: pollutant
sources (#); local maximums ( ). The isoline 7 corresponds to 2000 kg /km2. Isoline step is 2000 kg /km?.
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Fig. 2. Accumulation of an anthropogenic pollutant (kg,/km?2) on the underlying surface of Southern Baikal during a year; * is the
order of the number 103.
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