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Identification of spiral dislocation of wave front and
compensation for its influence on formation of optical
structures in ring interferometer
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A modification of the Akhmanov—Vorontsov model describing formation of optical structures in a
nonlinear ring interferometer (NRI) is proposed. The case of optical field turning through some angle in
the laser beam cross section (in NRI feedback) is studied. It is found that both the order of spiral
dislocation of the wave front at the entrance to NRI and phase delay of the field in the NRI feedback
have an identical effect on formation of optical structures. Theoretical analysis and computer experiments
show new applications of the NRI: for identifying the order of spiral dislocation of an optical vortex (by
the shape of optical structures in the laser beam cross section in the NRI), for compensating for the
influence of an optical vortex on the process and result of structure formation in the NRI, and as a basis
of an arithmetic and logic unit executing the operation of addition.

Introduction

In recent years, light fields with spiral
dislocations of the wave front attracted attention of
researches in atmospheric optics and laser physics.
Perturbations of such a kind cause the spiral character
of propagation of the radiant energy. It is believed that
optical vortices arise due to isolated points with zero
intensity in the laser beam cross section, for example,
because of random inhomogeneities in the optical
parameters of a propagation channel (see Refs. 1-4 and
references therein). The methods of correcting such
perturbations are developed in adaptive optics.

The traditionally considered types of distortions of
equiphase surfaces do not change topology of phase
fronts. However, appearance of optical vortices in a
light beam is necessarily accompanied by appearance of
singular points, at which the phase is uncertain. By
analogy with two-dimensional lattice defects, these
points are called spiral dislocations (SDs). Appearance
of SDs changes cardinally the topology of phase fronts.
Upon passing around a SD, the phase changes by 21V
(V4 is an integer non-negative number equal to the SD
order). Depending on the sign of the phase change, left
and right SDs are distinguished. Let the origin of the
coordinate system coincide with a singular point. Then
the complex amplitude of the field in the vicinity of the
singular point is

A=Cr'dexp (2] Vqaz), 1)

where C is an arbitrary constant; » = 0Or[ is the distance
from the SD; r = (x, y) is the radius vector of a point
in the cross section; j is imaginary unit; @z is the
azimuth angle. The current methods for theoretical
determination of the conditions for appearance of SD and
its position use mostly the apparatus of wave optics.
Progress in this field is considered in Ref. 2.
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Formation of SDs on the wave front of laser
beams is a purely phase effect. Therefore, the only
mean providing reliable identification of SDs is the
method based on the use of interferometric information.
Interferograms of the beam cross section can be
obtained in different ways.

In the opinion of Korolenko,! the most convenient
way is the method based on recording of the
interference structure of the studied field with a plane
or spherical homogeneous wave acting as a reference
one. This allows the SD order and number to be
determined from the structure of the interference
pattern. This method can be implemented using, for
example, the Michelson interferometer.3 Nevertheless,
the necessity of formation of a reference wave being
coherent with the wave having passed through the
turbulent atmosphere or other inhomogeneous medium
poses well-known difficulties. Besides, the reliability of
SD determination and identification of SD order
assumes the availability of technical means for analysis
of the structure of an interference pattern.

Therefore, it is worth considering existence of an
alternative method of SD detection. It is desirable for this
method, first, to open up the possibility of simpler
detection of SD and identification of its order and,
second, to provide interference of the studied light wave
with the same wave subjected to spatial transformations
with a linear element. Third, this method should
provide the possibility of application of nonlinear-optics
effects. Fourth, for further extension of the problem, it
is worth considering the capability of the new device of
compensating for the influence of spiral dislocations.
One of such ways is, in our opinion, analysis of the
type of dynamics in a nonlinear ring interferometer
(NRI) used in atmospheric adaptive optics.>~7

In this paper, we consider the mathematical model
of formation of an optical structure in the cross section
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of a laser beam in the NRI for the case that radiation
with spiral dislocations of the wave front comes at the
NRI entrance. The results of mathematical simulation
are discussed as well.

1. Model of processes in nonlinear ring
interferometer

Let us consider an optical system shown in Fig. 1.
Here NM is nonlinear medium of length [, G is a linear
element responsible for large-scale transformation of
the field in the feedback unit; it deflects a ray from
the point r' = («', ') of the beam cross section to the
point r = (x, y); the reflectance of the mirrors My and
M, is R, and that of M3 and M, is 100%.

X
M, NM M

E in > > E out

M4 ’ MS
Fig. 1. Optical layout of nonlinear ring interferometer.

The mathematical model of the dynamics of
transverse distribution of the nonlinear phase incursion U
in the case of a ring interferometer with a thin Kerr
medium (i.e., a medium with square dependence of its
refractive index on the electric field strength of
radiation) is considered in detail in Ref. 8 in the
approximation of high loss (or in the approximation of
a single pass) and dispersion-less diffraction-less
propagation of the field. Reference 8 considers a rather
general case. The light beam at the NRI entrance is
characterized by the angular rate of rotation of the
polarization plane Q, circular optical frequency w, and
slowly varying (for the time 21/ w) parameters: position
of the polarization plane ), phase ¢, and amplitude A.

The Kerr medium under the exposure to the light
electric field polarizes and becomes anisotropic
acquiring the properties of a uniaxial crystal with an
optical axis parallel to the vector of electric field.
According to the definition, the main optical plane
passes through the crystal optical axis and the light
wave vector (Ref. 9, p. 542). Hereinafter we assume
that Q = 0 and Y = const. Then, since the main optical
axis is parallel to the light field strength vector, the
latter lies in the main optical plane and, by definition,
corresponds to an extraordinary ray. An ordinary ray is
not formed at such geometry.

Taking into account the above-said, the
mathematical model proposed in Ref. 8 reduces to the
form
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A, ) = (1= R) {A%r, £ - 1) +
+yn(r, t — 1) A@, t — 1) A(r, t) x
x cos[wt + ¢(r, t) — ¢(r', t — D] + pA2(r', t — D};
1,dU(Gr, £) /dt = ny lk A2 \u(r, ) —
- U(r, t) + D, by, U(r, ©), 2)
where A;, yy is the amplitude of the light field at the

entrance to the nonlinear medium;
=1, )=t (") +UC, t)/w
g, in the approximation

_ of high loss,
P= gvn(r, t = 11274, in the single pass
approximation;

n=n, =01 +1/w0dU(, t)/dt)~1/2 1 is the
total time needed for a light beam to pass over the
interferometer; o is the coefficient of beam extension in
the element G; 1, is the relaxation time of the
nonlinear response of a medium (for example, liquid
crystal); y is the coefficient of loss in the field
amplitude while passing over the NRI; D, is the
diffusion coefficient of polarized molecules of a liquid
crystal normalized to the beam radius and 1,; A,, is the
Laplace operator of cross coordinates.

The single-pass mode here is a mode, at which
some component of the light field has passed the
feedback unit, but at the next passage it was removed
and thus did not come to the nonlinear medium. If the
power loss in the interferometer is so high that we can
neglect the term with {y/0/2}?, then it is generally
accepted to speak about the approximation of high loss.

If we taken =1, t, =0, A = const, Iy = A2, p =0,
and nonlinearity parameter K = ny [k (1 = R) I, then
we obtain the result coinciding with the models in
Refs. 5, 6, and 10 and differing from the model from
Ref. 8 by the absence of the factor 0.5 in the expression
including the product mny/k (since the ray is
extraordinary).

2. Regularities in formation of optical
structures in NRI for the case of optical
field with spiral dislocations

Let an optical field with spiral dislocations of the
wave front come to the entrance of the NRI. Assume
that the center of this field (singular point at which the
intensity is zero) coincides with the optical axis of the
interferometer Oz.

According to Ref. 1, the complex amplitude of the
field strength in the vicinity of the singular point of
the field with spiral dislocation of the wave front is
described by Eq. (1). Consequently, the model (2)
describes this case, if we assume

AQr, t) = CrVd;

3
o(r, ) =+ Vqaz, )
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where az is the azimuth angle measured from the
positive direction of the axis Ox counterclockwise up to
the ray r plotted from the point O. Assume that in
some region of the beam cross section we can neglect
the dependence of the amplitude A on Vy, i.e., the
presence of this dependence does not provoke
appearance of bifurcations in the solution of Eq. (2)
like, for example, in the situations described in Ref. 5
(Fig. 5) and Ref. 6 (Fig. 6.9). Our further
considerations apply only to this region.

Case of field turning in the feedback unit. Let the
feedback unit of the NRI (with the element G) turns
the field through the angle A =2mM /m in the beam
cross section (Fig. 2), where M and m are coprime
numbers. Because the angles Ay = 2(M + im) /m and
Ny, = 21t M /m are equivalent, it is sufficient to consider
the case that M belongs to the half-open interval
[1, m). It is obvious that the whole set of points of the
beam cross section in the NRI is divided into an infinite
number of subsets. These subsets are chains of points,
at which light fields and nonlinear phase incursions U
interact sequentially (see Fig. 2).

X
M, NM M,
- |7 |- i
Ein EZ E Eout
- 3 -
o .
Yy
i
My a M3
Ay
2
1 X
3
b

Fig. 2. Ray geometry as light field turns through the angle
A = 120° in the cross plane in NRI feedback unit: trajectories
of three rays 7, 2, and 3 closed after three passages in the
NRI (@), projection of the closed trajectories of the rays 7, 2,
and 3 onto the plane of the beam cross section.

In other words, upon passage through the nonlinear
medium and NRI feedback at the point ¢ (for example, in
Fig. 2 i=1, 2, 3), the ray acquires the phase incursion
U; and experiences the delay t,;. Because of the presence
of the element G, the ray comes to the point i + 1. Here,
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adding together with one of the input rays of the
interferometer, it, according to the model (2), affects the
rate of change of the nonlinear phase incursion Ujiq.
(Note that because the trajectories of the rays in Fig. 2
are closed, the value of the index i+ 1 =4 should be
taken equal to i + 1 =1). The phase incursion U; at the
point i affects the incursion U;iq at the point i + 1 just in
this way. According to the terminology accepted in
Ref. 10, the points of this type are called transposition
points, and m is called the transposition order. At such
an organization of the feedback, the ray trajectory is
closed after the ray passes around the NRI m times. It
can be easily seen that, according to the accepted
method of numeration of the transposition points, 7 + 1
means the operation ((i+1)modm)+1, where
(i+1) modm is the remainder of division of i + 1 by m.
Physically, this means that the ray from the mth point
comes to the first one.

The transposition points are characterized by the
azimuth  angles  az; = azg + 2n/m) {(iM) mod m},
where azg belongs to the half-open interval [0, 211/m).
Then the field phase at the ith transposition point is
d; = = V4 az;. In the model (2) the difference between
phases at two transposition points ¢(r, t) — ¢(r', t — T)
can be taken equal to

oCr, ) — (', t — 1) =i — ¢; =% Vg Qn/m) x
x {[((i + 1) M) mod m] — [(iM) mod m]}.

Since this difference is under the cosine sign in the
model (2), it is sufficient to determine it accurate to
2t It follows that ;41— ¢; =% Vq QM /m).
Therefore, as the order of the spiral dislocation changes
by an integer number N, the value of ¢;+1 — ¢; changes
by A(¢i+1 - ¢l) =+ N (ZTM/m)

To reveal the periodicity in the dependence of
dynamics of the nonlinear phase incursion (and
intensity) of the field in the NRI on the value of Vy,
let us take the change A($;1q — ¢;) = 215, where s is
integer. Then

N=xsm/M. (4)

Obviously, there always exists such s that Eq. (4)
is fulfilled (recall that N is integer). Consequently,
within the model (2) as the order of the spiral
dislocation Vg changes by N, the dynamics of the
nonlinear phase incursion U(r, ) (and intensity
Ai2n nMr, £)), in the NRI is the same as before the
change. That is, due to the NRI there exists a
periodicity in mapping of the set of fields with spiral
dislocations of the wave front into the set of processes
Ulr, t), A aMr, £). The minimal period of mapping
corresponding to the minimal N (or s) in Eq. (4) is m.

We can prove the statement that ¢, g, and ¢, have
the equivalent influence on the dynamics of U and
Aizn nM- This statement, in view of the approximations
(accepted in the beginning of Section 2) on the field
parameters at the entrance to the NRI, transforms to
the following: if the value of U;(¢) — U;(t + &) is
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negligible, then within the model (2) the influence of
the modulation of phase ¢; #0 on the dynamics of
processes in the NRI can be reduced to the joint
influence of modulation of the delay time in the NRI
feedback unit t,y = t,; + &; and phase ¢,; = 0. Here
8y = [0i+1 — §;]1/w. We believe that the rate of transfer
of the wave front with spiral dislocation along the axis
Oz in the NRI is independent of V4. Then the field with
V4 #0 at the NRI entrance generates, with the delay
t,;, the same dynamics of the phase incursion and intensity
as the field with V4 = 0 at the entrance to the NRI with
teri = toi + [0y — 0;] /0= t,; £ Vq(Q2M /m) /.

Let us take into account the above periodicity in
mapping of the set of vortex fields with different
dislocation orders into the set of processes in the NRI
given by Eq. (4), as well as the equivalence of influence
of the delay ¢, (phase delay ¢y, in the feedback unit)
and the difference of phases ¢;+1 — ¢; at two points in
space and time. Then we can formulate the following
theses:

— within the NRI model (2) in the approximation of
high loss or single pass of the monochromatic linearly
polarized vortex field with the order of the regular spiral
dislocation V4, the set of fields with different Vg is
mapped into the set of optical structures U(r, t) and
A2 \m(r, ) (static or rotating36.19) in the laser beam
cross section;

— if the vortex optical field coming to the NRI is
deflected by the angle A = 2t M /m in the cross section
and delayed in phase by

b = don, — {* 21 (LM) mod m]}, (5)

due to field delay, then for the cross section region,
where the dependence of the field amplitude on Vy is
negligible (see Section 2), the map as a function of Vy
(and as a function of L) has the period m;

— then, knowing the value of Vg for the field at
the NRI entrance and the value of L from Eq. (5), the

structures from the set U(r, ¢), Ai2n nM(r, ©) can be
assigned the number N by the following rule:

Ny=Vq 0O, L, (6)

where ,, is the modulo sum of m; M and L are integer
non-negative numbers (M and m are coprime numbers).
Thus, using the NRI, we can identify the order of
spiral dislocation of an optical vortex (by the structures
in the beam cross section), as well as compensate for its
influence (by fitting the value of L meeting the
condition (6) at given Ny and V) on the behavior and
result of formation of optical structures in the
interferometer. Such compensation is urgent in the
context of problems of atmospheric adaptive optics.?
Case of specular reflection of the field in the
feedback wunit. Tet now the beam be reflected
specularly relative to the axis Ox in the feedback unit
(see Fig. 1). As in the case of field turning by the
angle A = 2t M /m, the whole set of the points of the
beam cross section in the NRI is divided into the
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infinite number of subsets. However, now the latter
ones consist of pairs of transposition points
equidistant from the axis Ox, and the rays coming
from the origin of coordinates to such points form the
angle, whose bisector is the axis Ox. Therefore,
m— az; = — (T~ azy).

Let us fix the square distance from the origin of
coordinates to some point x2 + y2. When moving from
the point of the cross section (—x, 0) to the point
(x, 0) (x > 0) along the upper half-plane (y > 0), the
azimuth angle changes smoothly from mto 0, and when
moving along the lower half-plane (y < 0) the angle
changes from 0 to 21 The difference of the azimuth
angles characterizing the transposition points changes
smoothly from 0 to 27t Since the field phase at the ith
transposition point is ¢; =+ V4 az;, in the model (2)
the phase difference between two transposition points
&(r, ©) — (', t = 1) can be set equal to

¢(I‘, t) — ¢(I", t—1)= ¢i+1 - ¢i == Vd (d2i+1 - chl').

It is obvious, first, that this difference is the same
for pairs of transposition points located on the rays
coming from the origin of coordinates. Second, at such
a pass around the origin of coordinates, the phase
difference of the initial wave at the transposition points
varies from 0 to * 2mVy. Then we can conclude that at
this pass around the beam center the characteristic
peculiarities of formation of optical structures repeat
only so much times changing each other. The number of
changes is unambiguously connected with the order of
the spiral dislocation V4. Thus, having determined the
number of changes of structure peculiarities, we can
find the value of Vy.

Since the mentioned phase difference varies
smoothly, the structure elements identified as belonging
to the same type are usually observed within some
sectors, rather than on infinitely narrow rays.
Formation of sectors of rays in actual structures is
favored by diffusion of molecules of the nonlinear
medium (or beam diffraction). Therefore, when
describing structures theoretically, it makes sense to
deal with the concept of sectors as well.

So, the following statement based on the above
reasoning and our computer experiments is valid for
some particular case. If the optical field experiences
specular reflection relative to the axis passing through
the beam center in the feedback unit of the NRI and
there is no delay, then proper choose of the
nonlinearity parameter (for example, K = 3.5) and the
diffusion coefficient (for example, D, = 0.01) can
provide formation of the structure consisting of sector
pairs in the beam cross section; the intensity of this
structure varies from one sector to another, therewith,
at azimuthal pass (in any half-plane) from [0, T) the
number of its sharp changes is equal to the order of the
spiral dislocation: Ny = V.

To illustrate the theses from Section 2, we will
consider the results of computer experiments.
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3. Demonstration of peculiarities in
formation of optical structures when

simulating processes in NRI
The periodicity of mapping of the set of fields
with different V4 into the set of optical structures in
the laser beam cross section for the case of field turning
in the feedback unit is demonstrated in Figs. 3 and 4.
Figure 3 shows the distributions of the nonlinear
phase incursion U(r, t) and the parameter proportional

to the intensity Aizn nM(r, ©) in the beam cross section
for the field turning through the angle 120° (i.e.,
M =1, m = 3), diffusion coefficient 0.001, delay close
to 0.11, (but at ¢¢p;,=0 and L =0), and the
parameter of nonlinearity K = 3.5.

As is seen from Fig. 3, the period of mapping of
the SD order into the set of structures is equal to three,
i.e., structures, for example, at the SD order equal to
0,0+ 3, 0+7 B, are similar. Dissimilarity of structures
in their inner details in Fig. 3 is caused by reasons of
computational origin: lack of coincidence between the
type of symmetry of field map in the feedback unit
(rotational symmetry axis of the third order) and the
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type of symmetry of a rectangular grid used in the
computational scheme of the finite-difference method.!1~13

It should be noted that at the SD order equal to
1 + 3i, the presence of delay leads to generation of
rotating (in the cross plane) structures. In other cases,
only static structures are formed at so short delay. This
fact gives a simple criterion for recognition of spiral
dislocations with V4 =1 + 3i: periodic character of a
signal when recording the intensity of a part of the
beam at the NRI exit. Recall, that rotation of
structures is impossible in a ring interferometer without
nonlinearity. The SD order can be also determined from
the averaged (over cross section) intensity of the whole
beam at the NRI exit.

Figure 4 shows two types of similar structures
formed at field turning through 180° (i.e. M =1,
m = 2) and the parameter of nonlinearity K = 2.2 (all
other parameters are the same as in Fig. 3). At even
orders of spiral dislocation, a spatially bistable
structure> 6 is formed, and at odd orders, the structure
is monostable (the light intensities in the transposition
points are the same). The period of mapping in Fig. 4 is
equal to two, what is in agreement with the first thesis
of Section 2.

Square amplitude at the

Mean square amplitude
at the entrance to

Phase incursion U(r, ¢) | entrance to nonlinear medium V4 li di
NM/(1 _ R) nonlinear medium
NM/(1 - R)
max = 3.4906 max = 1.0000
i min = 1.9239 ! min = 0.5000 0 0.7038
max = 4.3795 n max = 1.3876 .
E min = 2.8255 min = 0.6571 ! 1.0266
D max = 5.1051 ¢ max = 1.4994
min = 3.5097 min = 1.0000 2 1.3324
!
max = 3.4906 Y s = 1.0000 B
min = 1.9231 min = 0.5002 0+3=3 0.7044
‘] max = 4.3991 P ax = 1.4191 ~
D min = 2.8135 min = 0.5078 t+3=4 1.3324
max = 5.1020 max = 1.5000 B
iy nin-3507 min = 0.6885 25 ° 2784
i
max = 3.7124 max = 1.4783 _
min = 1.9758 min = 05000 0 Ft307=21 0.7401
max = 4.1347 max = 1.4986 _
min = 3.0387 min = 05001 | "3 =22 1.028
max = 5.0173 max = 1.5000 9437 =23 1.9784
min = 3.0275 min = 0.5000

Fig. 3. Observed structures at the diffusion coefficient D, = 0.001, delay ¢,,/1, = 0.1, coefficient of nonlinearity K = 3.5, and field

turn A = 120° (approximation of high loss).
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Square amplitude at the

Mean square amplitude
at the entrance to

Phase incursion U(r, t) |entrance to nonlinear medium | . .
NM /(1 - R) nonlinear medium
NM/(1 = R)
! max = 2.3917 max = 1.0873
min = 1.3953 m min = 0.6341 0 0.8561
mz}x = 3.2882 lTlE.).X = 1.4946 1 1.4946
min = 3.2882 min = 1.4946
I

Fig. 4. Observed structures at D, = 0.001, ¢, = 0, K = 2.2, A = 180° (approximation of high loss).

Square amplitude at the

Phase incursion U(r, t) entrance to nonlinear medium V4
NM/(1 - R)
max = 3.4919 max = 1.0000 0
min = 2.1440 min = 0.5626
max = 4.6147 F max = 1.4403 .
min = 2.4430 I min = 0.5504
max =5.3639 max = 1.6176 )
min = 3.5112 Mty min = 1.0000
max = 3.4919 max = 1.0000 0+3=3
min = 2.1415 min = 0.5625
max = 4.5974 max = 1.4660 1+3=4
min = 2.4517 min = 0.5357
g | max = 5.5358 max = 1.7260 24+43=5
] min = 3.5108 min = 0.6937
i
max = 3.8316 max = 1.5056 0+307 =21
min = 2.1874 min = 0.5021
max = 4.5294 max = 1.6759 1+37 =22
min = 2.9678 min = 0.4628
max = 5.4238 max = 1.7754 2+3007 =23
min = 3.4579 min = 0.5154

Fig. 5. Observed structures at D, = 0.001, ¢, = 0, K = 3.5, A = 120° (multipass interferometer).

According to Eq. (5), the phase delay in the
feedback unit is

dep = dogp — {£ 21 [(LM) mod m]}.

The computer experiments carried out at varying
Of,, when the value of L was varied and ¢gp, =0,
confirmed the proposed rule of numeration of the
structures (6), i.e., Ny = V40, L, and the equivalent
influence of V4 and L on the dynamics of the
structures.

Figures 5 and 6 have been obtained at the same
parameters of the interferometer and input radiation as
Figs. 3 and 4, but the structures shown in them
correspond to the model of multipass interferometer

described in Ref. 8. Comparison between Fig. 3 and
Fig. 5, as well as between Fig. 4 and Fig. 6, shows a
qualitative similarity of the structures obtained at the
same SD orders. This promises that the structures in
the multipass interferometer can be numerated by the
same or similar rule as in the interferometer in the
approximation of high loss or single pass.

Figure 7 corresponds to the case of specular
reflection in the feedback unit. It shows the structures
of the nonlinear phase incursion consisting of pairs of
sectors whose intensity varies from sector to sector. It is
seen from Fig. 7 that at azimuthal pass (in any half-
plane) from [0, 7D the number of sharp intensity
changes is equal to the SD order. The validity of the
second thesis of Section 2 is thus demonstrated.
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Phase incursion U(r, t)

Square amplitude at the
entrance to nonlinear medium Vy

Fig 6. Observed structures at D, = 0.001, ¢,

NM/(1 - R)
max = 1.8404 max = 0.8365 0
min = 1.8399 min = 0.8365
max = 3.5923 max = 1.6329 1
Z min = 3.5923 ! min = 1.6329

=0, K =2.2, A =180° (multipass interferometer).

max = 3.1852 max = 4.8909 \ ! max = 4.8626
min = 1,7517 min = 1,9609 min = 2.1033
Vi=0 V=1 ’\. V=2

B

""‘\ V=3

’/ max = 4.5793

min = 2.2575

Fig. 7. Structures formed under the NRI exposure to vortex field with different dislocation order V4 at K = 3.5 with specular

reflection of field in feedback unit.

Conclusion

The analysis and imitation experiments have
shown a possibility to identify the order of spiral
dislocation of vortex field at the input to the nonlinear
ring interferometer by the shape of structures of
nonlinear phase incursion (and intensity), and by their
dynamics in the model (2) of the processes in the NRI.
In the case of field rotation in the NRI feedback unit
through some angle, it was found that the dislocation
order V4 and delay (phase delay) of the field in the
feedback unit have the equivalent effect on formation
of optical structures. This equivalence is formalized in
the rule of structure numeration (6).

The obtained result allows us to suggest the
following applications of the NRI: (1) to identify the
order of spiral dislocations in optical vortex (by the
shape of structures in the beam cross section), (2) to
compensate for the vortex influence (by fitting L,
which meets the condition (6) at given N, and Vy4) on
the behavior and result of formation of optical
structures in the interferometer, (3) to be used as a
basis of an arithmetic and logic unit executing the
operation of the modulo sum of m.

The potential advantage of NRI application to
identification of the SD order is the possibility to obtain
situations, in which the dynamics of processes in the NRI
(or formed structures) changes qualitatively at varying
V4. This can simplify significantly the process of
identification of the SD order V.

In the case of specular reflection of the field in the
feedback unit, the order V4 can be determined from the
number of changes of structure peculiarities at
azimuthal pass around a singular point.
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