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The method averaging over angles of arbitrary functions of the angles of mutual orientation with
the use of angular form-factor is developed for the dipole-dipole and dipole-quadrupole interactions. The
functions are averaged by use of a single integration over the form-factor with certain weights, for which
explicit analytical equations are derived and the method of numerical calculation is formulated. For the
dipole-dipole interactions, the weighting factor is expressed in terms of elementary functions; for the
dipole-quadrupole interactions, it is written in terms of the first-kind elliptic integrals, and two

approximations are proposed for it.
Introduction

In many problems of gas Kkinetics, theory of
scattering of particles, and theory of multiple scattering
of light, there is a need in averaging the calculated
results on the sought or intermediate parameters (for
example, scattering cross sections) over mutual
orientation of particles participating in the pair
interactions. Important particular cases are interactions
between two dipoles and between a dipole and a
quadrupole. Since two polar and one axial angle describe
the mutual orientation of the latter, the averaging over
orientations is, in fact, a triple integration of some
preset function over angles. This procedure, in the
presence of some other parameters, significantly
increases the dimensionality of the problem and the
time needed for making numerical calculations.

At the same time, there is a possibility of reducing
the triple integration to a single one, in which the
integration parameter is the angular form-factor
(indicator function) of the interaction between particles
(). In this case, the preset function of angles is
averaged with the weight w(d), being the density of
probability that the angular form-factor takes a fixed
value 8. The direct method of numerically calculating
w(d) for any interaction consists in dividing the
integration intervals for every variable into a great
number of equal sub-intervals, calculation of & for all
the elementary volumes of the space of integration
variables, and then estimating the number of cases that
the angular form-factor takes the value in the given
narrow interval about & with & varying in the entire
range of its values. At the same time, the exact analytical
calculation of w(d) is possible for relatively simple
form-factors.

The aim of this paper is to find exact analytical
equations for the weighting factor w(3) for the dipole-
dipole and dipole-quadrupole interactions and thus to
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implement the economical method of averaging the
sought function by means of single integration over the
angular form-factor of the interaction.

1. Dipole-dipole interaction
The potential of the dipole-dipole interaction! can
be presented in the form

2dd
Vaalr)=- 713 2.5(81,8,,9),

3(84,6,,9) = cos B cos 6, —%sin 0;sin B, cosd, (1)
¢= ¢1 _¢2 ’

where (01, 85, ¢) is the angular form-factor whose
values vary from —1 to 1; 6y and 6, are the polar
angles that determine the orientation of the vectors of
dipole moments d{ and d, about the axis z passing
through the centers of molecules (atoms); ¢ is the
difference between the axial angles connected with the
dipole moments; 7 is the distance between the centers of
molecules.

To be averaged over angles is some preset function
(for example, transport scattering cross section)
dependent on angles via the angular form-factor,
P[3(64, 85, §)], so that its average value is determined
by the quadrature

2m T 1
p= Sin J)'d¢J)'sin o d91J0'P[6(91,92,¢)] sin 8y d8y . (2)

Replacing the variables in Eqs. (1) and (2) as

x=cosBy, y=cosBy, z=cosh 3)
and taking into account the symmetry of cos ¢ with
respect to the replacement ¢ — ¢ + 1, we obtain from
Eq. (2) the equation for w(d):
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1
I w(d) P(8) dd =
-1

1 1 1
1 dz
— [——— [dx [dy P[3(x,y, 2)]. (4)
4T[_I1 1_22 _I1 L
For a fixed value of the angular form-factor

d = const, from the second equation of the system (1)
using new variables

xy—%2\1—x2 1—y2:6, (5)

we derive

z=2 L % == ; (6)
m«1—y2 05 x1—x2«/1—y2

Then, from Eq. (4) taking into account that

dz = (0z,/08)dd we have the explicit equation for the
weighting factor in the form of a double integral

1 yy(x) dy
() = — .
“® n.rde’ J1_2_2_322+8 5 — 452
e il 1-2% -yt -3y sy

)]

In Eq.(7) the symmetry of the integrand with
respect to the simultaneous alternation of the signs of x
and d is taken into account. This allows our consideration
to be restricted to only positive values of x. The limits
of integration over y in Eq. (7) are determined from
the condition of positive definiteness of the radicand in
the denominator of Eq. (7) and equal to

- _ .2 2 _ /52
y1,2(x) _ 46x+\/1 x \/1+3x 40 '

(8)
1+ 3x2

The lower limit of integration over x in Eq. (7) is
dependent on & and determined from the condition of
positive definiteness of the second radicand in the
numerator of Eq. (8):

B o §<1/2;

= 9
‘ @D/(452 -1 /3,[8>1,2.

Upon calculation of the integral (7), we obtain
the final equation for the weighting function @(d) in
terms of the elementary functions:

arcsinh/3 /+/3=0.7603459963  [§<1,2,

O
= (10)
garcsinh\/g —arcsinh\/452 -1)/+/3, 1/2 <|§=t,

w(f)

dt

1+

arcsinh x = ,
t2
0

where arcsinh x is the inverse hyperbolic sine.
Figure 1 shows the plot of w(d) (curve 7).
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Fig. 1. Weighting factor @(d) as a function of angular form-
factor &: dipole-dipole (curve 7) and dipole-quadrupole (2)
interactions.

2. Dipole-quadrupole interaction

The potential of the dipole-quadrupole interactions
isth2:

_3dQ

VdQ(’) = 27745(917 82, 0);

25(61, 6y, ¢) = cosBy -3 cos By cos? 0,y +
+ 25sin 81 sin By cos B9 cos ¢ .

11)

Here d and Q are the dipole and quadrupole moments,
and subscripts 1 and 2 of polar angles correspond to the
dipole and quadrupole moments. Similarly to the case
of dipole-dipole interaction, |8| < 1.

In using the variables (3) we have from the
equation, similar to Eq. (5),

x—3xy2 +2y2\1—x2 1—y2 =20

(12)

that
20-x+ 3xy2 0z _ 1

2_2y\/1—x2«/1—y2; g_yw—xzxﬂ—yz‘

Substituting Eq. (13) into the equation similar to
Eq. (7), for the weighting function we have (taking
into account the domains of existence) that

(13)
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G =4 (y* - y? +8%) + 42081 - 3y%) - 22 Gy* =247 +1) =

= [r2(y) - o] [x - 21 ()] (1 - 2% + 54,

M-8 T 1=y -y 4 )
b2 (1-y*) +4y*

Y10 =17 2:58% =1 /5.

Integration over x in Eq. (14) yields

)

X3
J’d—x=n, (15)
x1« ‘XZ —xiix—xﬁ
whereupon Eq. (14) becomes simpler:
a 1 dy
0 0, (6)= d= 15
I:l 1 ) )
0 J&/hiyi
a
g Y d 1 d
&)= [t + L, 15<[g<1/2,
oe)=0207 ity [ty <8
|:| 2
0
0 -
5)= Y 1/2<[8<1,
ng() JW / <‘&<
I:l 2
a
h(y)=1-2y% +5y4%. (16)

Integrals in Eq. (16) have no singularities, and they
can be easily calculated numerically. Besides, they can
be expressed in terms of the first-kind elliptic integrals

F(d, k) (Ref. 3):
w;(8)= F(bg, k)/~/[1-2i =0.94145838065,
@, (8)= [F(0o, k) + F(01,%)~ F (oo, )/1-2i, (17
w3(8) = [F(60, k)~ F(®2, )/ -2
0 = iarcsinh (1-/1-2i)

¢1,2 =iarcsinh Emv1$2w/562 —1/@%

k=(~3+4i)/5;

da

¢
F($,R)= [———.
‘([)-x/1—k2 sin o
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The plot of w(d) for the interaction of dipole with
quadrupole is shown in Fig. 1 (curve 2). The equations
(10), (16), and (17) for w(d) were checked by comparing
their numerical values over the entire variability range
of & with the values determined by direct numerical
calculation wusing the method mentioned in the
Introduction. As the variability range of the variables
x, ¥y, and z was divided into 400 sub-intervals, the
calculation error did not exceed several tenths of percent.

The approximation of @(3) in Eq. (16) for

1/4/5 <[ <1 with the use of Eq. (17) is

g;q(es), 0.447214 <|3 < 0.460410,
O
0%@)  0.460410 <|3 < 0.486803,

0y(® = 0 (18)

gfg o) 0.486803 </ < 0.5,
O
H7,(6) 0.5<(3 <1,

1079 £,(8) = 0.0572191769026292185 —
~0.628380667200095199B0 + 2.76031804854741036 5> —
— 6.06262165127714869B° + 6.6577390572264905 5" —
~ 2.92447532902603946 B ,

1079 £,(3) = 0.00811885729601806716 —

— 0.119650507837565367B0 + 0.7558401935107008645° —
~ 2.65304108695197449BF + 5.588293002877310125" —
~ 7.06374094050267409B + 4.961197118953355028° —
~ 1.49358449218467121B0 ,

f3(d) = 16072.6946208560477 — 72799.257818450842B 1+

+ 86783.54154378453696 5" -
—233.853195736137298 / (1 — 1.76683750229503599B) +
+51.4883116122848782 /(1 — 1.87620251865767855300) —
—8.198282293318840017 /(1 -1.9157296019330518180) ,

1076 £,(8) = 0.00108604508377038611 —

— 0.015811503786130620230 + 0.104590683732212963 & —
— 0.414388692997690455B° + 1.09193292695932097 &' —
— 2.00851644379019989BLF +2.6308951188267744 & —
— 2.45356710277850886 BV + 1.59634164811143053 &° -

~0.690011705239826156@B0° + 0.178321640536417991 5'° -

~0.0208726146576362703B0' .

The error of approximation (18) is 200076,

For some applications, it may be more convenient
to use the following simplified approximation of w@(5)
given by Eq. (16), whose maximum error is [0.1%:
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H.94145838065, §<1/4/5,
0
0 H 7.90928 [
0 19)
%p(é):%s 69412(0.47453 - E,l 0095 02932 E+0,56797, 15<§<1,2,
0 I] 0
0
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