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Using an array of sensing data obtained with a micro-pulse aerosol lidar data as an example, two
spectral statistical methods of data processing are compared. The methods compared are the non-
parametric method that uses a fast Fourier transform (FFT) and the parametric one based on a model of
“autoregression moving average” (ARMA). The calculations have been carried out following the two-
channel spectral estimation scheme by the Nuttall —Strand method for the ARMA model. Spatiotemporal
distributions of the coherency and phase spectra were calculated from spatiotemporal distribution of
atmospheric aerosol scattering coefficient. The advantages of parametric approach ensuring more high
frequency resolution and higher accuracy of obtained spectral estimates are shown. At interpretation of
aerosol lidar data, the coherency spectrum was indicative of the regions in space, where temperature
inversion could happen. The phase spectrum makes it possible to detect zones in the troposphere of slowly
ascending and descending aerosol inhomogeneities. It is proposed to start spectral processing of lidar data
with the ARMA model of the second order to obtain smoothed spectral estimates.

Introduction

The use of correlation or spectral analysis in
processing data of lidar sensing makes it possible to
essentially increase the bulk of information that may
thus be extracted. The idea of statistically processing
lidar data is not new. Eloranta! and other researchers2.3
successfully applied classical, or non-parametric,
approach based on the fast Fourier transform to
estimating the wind velocity, spectra of atmospheric
turbulence, the rate of dissipation of kinetic energy,
and so on. The accuracy of statistical estimates
obtained by a non-parametric approach and their
frequency resolution depend on the sample length.4:5

One of the principal peculiarities of the processes
occurring in the atmosphere is a very wide spectrum of
the scales of physical parameters such as wind velocity,
temperature, pressure, aerosol number density, etc. The
spectra of these parameters range from millimeters to
hundreds and thousands of kilometers.6 Besides, the
low-frequency  fluctuations  cause  unsteady-state
(trends) behavior of high-frequency components of the
process observed, and one should give due regard to
this fact in the corresponding analysis.

In observing slow low-frequency mesoscale
processes, researchers face the problem on acquiring the
bulk of initial data, which would suffice analysis to be
carried out. Let us show this by an example. Let us
suppose that one needs to obtain a power spectrum of
fluctuations of an atmospheric parameter in the
troposphere in the range of spatial scales from 1 to
100 km. Let us assume that the mean wind at a given
altitude is 10 m/s. Then, according to Kotelnikov
theorem, the duration of observations (Nyquist
frequency)* should be no less than
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2 x 1000 m /10 m /s = 3 min. One should choose the
total duration of an observation to be on the order of
10 x 100000 m /10 m /s = 30 hours, if it is planned to
record at least 10 inhomogeneities of a 100-km size. If
the frequency resolution of 0.333 cycle /hour has been
chosen that corresponds to the size of 100 km, then the
error in estimating the spectrum is 22%.6 Of course, one
can decrease the error by lowering the frequency
resolution or due longer observations which is quite
long and exceeds one day.

Let us note that an increase in the duration of
observations can have no positive effect if the process
under study is an unsteady-state one. It happens so that
most interesting atmospheric situations such as during
the passage of atmospheric fronts are the unsteady-state
ones and relatively transient. For example, the
characteristic size of frontal zones at the boundaries of
air masses is of 50 to 100 km, and the time of front
passage through an observation point is a few hours.”

This was the reason why we have turned our
attention to the parametric approach8 to spectral
estimation of short data series. The parametric statistics
enables one to obtain the spectra with a higher
resolution than the classical non-parametric approach.>
A short data series is defined as a series of data for
which the obtained spectral resolution has the same
order as the value inverse to the length of this series. In
other words, the parametric spectrum provides for data
on variations, the period of which is comparable with
the length of the sample.

This is a very important fact because the non-
parametric approach requires the trends to be removed
by means of, for example, power polynomials4 before
Fourier analysis. Let us remind that a trend is defined
as a low-frequency component of the process, the period
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of which is comparable with the length of the sample.
Otherwise, the spectral estimates will suffer an
additional error. In analyzing parametrically, it is
sufficient to remove only linear trend, i.e., the
variations with the period many times greater than the
sample length.8

Hence, application of the parametric approach
makes it possible to transform the low-frequency
variations of the process from disturbing factor to
useful information. Moreover, the low-frequency
fluctuations can be of interest for researchers.

The purpose of this paper is to experimentally
examine the parametric way of processing samples of
short data series on aerosol acquired with a micro-lidar
and to obtain additional information about the
processes occurring in the atmosphere.

Method

Parametric description of the statistics of second
order is based on the model of time series corresponding
to the random process to be analyzed. We investigated
models8 of a class of processes initiated by a white
noise, that possess the rational system functions. The
model of an autoregression moving average (ARMA)
process was chosen from this class. The output
processes of the models of this class have spectral
power density, which can completely be described using
the parameters of the model and variance of a white
noise like process.® Some information is often available
in practice about the process, from which the data have
been read. This information can be wused for
construction of the model approximating the process,
which produced the observed time series.

The parametric method of spectral estimations
involves three stages. The parametric model of a time
series corresponding to the available record of the
measurement data is being chosen at the first stage. The
ARMA model of the time series appropriate for
approximation of many stochastic processes with
discrete time is described by the output of a digital
filter with the complex coefficients

x[n] = - %A[k} x[n— k] + % B[R] uln — k], (1)
k=1 k=0
where u[k] is the input sequence, x[n] is the sequence
at the filter output, and p is the order of the model.
We have selected a mixed ARMA model for two
reasons. First, theoretical spectrum of fluctuations of
the atmospheric parameters is smooth without any

sharp depressions,® which is often called the
Kolmogorov one. The moving average model
corresponds to such a spectrum.8 Second, the

autoregression can satisfactorily describe sharp increases
and decreases in the spectrum, for example, when a
sample contains variations in a narrow frequency
range.8 Such situations can occur in the atmosphere
under conditions of stable thermal stratification !0 when
the appearance of flotation waves is possible. Let us
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note that at present choosing models for parametric
spectral estimation is practically limited to the
aforementioned three models.

The multi-channel ARMA models are most
informative at laser sounding of the atmosphere. The
multi-channel analysis of time series makes it possible
to simultaneously process the data from several
channels and to estimate their interrelations. The
output x[n] and initiating u[k] processes in Eq. (1) are
transformed in the case of M-channel ARMA process to
the M x 1 vectors, and the coefficients A[k] and B[k]
are replaced by the M x M matrices of autoregression
parameters.8

The estimates of the model parameters are
calculated at the second stage, i.e., the matrices of the
coefficients A[k] and B[k]. In so doing, we used the
Nuttall —Strand method, which is the multi-channel
version of the harmonic average.8 This method is based
on estimating the cross correlation coefficient. The
Nuttall —Strand method is described in detail in
Refs. 11 and 12.

At the third stage, the values of the estimated
parameters are substituted into a theoretical formula
describing spectral power density corresponding to the
model chosen. The estimation obtained is the auto-
spectra G, (f) and cross-spectra G, (f), which will be
considered below. All the calculated spectra are
discrete, but, for simplicity, we denote them as
functions of frequency in parentheses.

The auto-spectrum, or merely spectrum, is a series
expansion of the variance of the process over frequency.
Indices “xx” indicate the process (or time series) x(t)
which is denoted in discrete representation as x[n]. If
the time interval between the neighboring readouts is
At, then x(t) = x(nAt) = x[n]. The maximum of the
spectrum G, (finax) shows oscillations or fluctuations of
what power and at which frequency dominate in the
sample x[n].

The mutual, or cross-spectrum G,,(f) is a complex
quantity, and therefore it is inconvenient to consider it
in a usual form. Indices “xy” indicate the time series
x(t) and y(¢). Usually the cross-spectrum G,,(f) is
presented in the form of two real functions of
frequency4: the coherency spectrum yxzy(f) and the
phase spectrum 6,,(f), which we shall call the
“coherency” and “phase” spectrum, respectively.

The coherency spectrum yxzy(f) is defined as

Yoy (D = DG (N /[GoalD Gp(Pl, (D

where G, (f) and G,,(f) are the auto-spectra of the
time series x(¢) and y(¢), respectively. The coherency
spectrum (2) is dimensionless and varies from 0 to 1,
indicating, what a fraction of the process y(t) is caused
by linear transformation of the process x(¢) at the
frequency f.

Let us explain the meaning of the coherency
spectrum yfy(f). Let, for example, x(¢) and y(¢) be
related to each other by a linear dependence
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y(t) = ax(t) + b, where a and b are constants, then the

coherency spectrum yxzy(f) = 1. If the processes x(¢) and
y(t) are not related to each other, i.e., their sources are
different, then yxzy(f) =0. If y(¢t) = ax(t) + z(t), where
z(t) is an independent process, for example, noise, then
0 <y2(f) <1. This is schematically illustrated in
Fig. 1, in which the rectangles show the neighbor
aerosol layers. The number of arrows between the layers
indicates the degree of statistical correlation between
the layers.

| Y2 =1 - 0<y <1 | ¥ =0 |
T340 T 0 T .
a b c

Fig. 1. Three variants of the statistical interaction of the
neighboring aerosol layers explaining the meaning of the
coherency spectrum: strong interaction (a), intermediate
case (b); and no interaction (¢).

The phase spectrum (or “phase”) 8,,(f) is defined
by the cross-spectrum G,,(f) as

0.,(f) = arctan [Im G,,() /Re G, (N]. 3)

Equation (3) allows one to calculate the phase
angle at the frequency f between the processes x(¢) and
y(t), which is proportional to the time delay between
these processes.4> For example, theoretical formula for
the phase spectrum® 8,,(f) when the process y(t) is
behind x(¢) by the time T, i.e., y(¢) = x(¢ — 1), has the
form

0.,(f) = — 2mft. (4)

In principle, the phase makes it possible to
estimate the modulus and direction of the velocity of a
slow motion of the aerosol inhomogeneities along the
vertical direction, however, the accuracy is low when
sounding in only vertical direction.!3 Nevertheless, the
phase can be used for qualitative analysis to determine
the direction of propagation of the aerosol
inhomogeneities along the vertical direction. If, when
calculating the phase, the first time series has
corresponded to higher altitude than the second one, it
follows from (4) that the phase should be negative at
motion of the aerosol inhomogeneities downwards.
Respectively, the phase is positive at the upgoing
motion of the inhomogeneities.

Procedure of calculation and experiment

Now let us define, in which form one can use the

coherency, y,fy(f), and phase, 8,,(f), spectra when
interpreting the data of laser sounding of the aerosol
density. Let the processes x(¢) and y(¢) introduced
above be a time series of observations over aerosol
scattering coefficient a(z, t) at two altitudes z; and zy,
ie.,
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x(t) = 0(zy = 20 + Az, t{ + 1);
y(t) = o(zy, ty + 1), (6))

where t; is the fixed moment in time, Az is the height
resolution of lidar measurements. The parameters z; and
t; included into the formula show that different parts
of the data array can be spectrally processed.

It follows from Eq. (5) that zyp = zy + Az, so the
coherency spectrum (2) will show the strength of the
statistically linear relation of the aerosol densities at
the neighbor heights z; and z; + Az, which we will
denote as y2(zy, ty, f). To better estimate y2(zy, tq, /),
it is desirable to average the coherency spectrum at the
neighbor heights. Let N, be the number of averaging
acts over height, and N; the number of points in the
time series at spectral estimations. Then, changing the
height z4 and time ¢, one can obtain information about
the coherency spectrum y2(zq, ty, f) with the spatial
resolution along the vertical direction Az N, and
temporal resolution At N;.

When interpreting the data of laser sounding of
atmospheric aerosol, the approach applied to estimating
the phase spectrum 0(zy, ¢y, /) was identical to that of
estimating the coherency spectrum mentioned above.

The experiment was carried out using the aerosol
laser radar set similar to the system described in
Ref. 14. Such lidars are often called micro-pulse lidars
(MPL). The MPL-systems contain low-power diode-
pumped solid-state (DPSS) lasers. However, high
repetition rate of sounding pulses and counting mode of
operation of a PMT makes it possible to carry out
sounding of aerosol up to the height of 10 km and
higher. A MPL-lidar is capable of operating in
automated mode for a long time.

Sounding was carried out along vertical direction.
Spatial resolution of the lidar measurements was
100 m. The lidar data were accumulated during
2-3 minutes and so the discretization frequency was
20-30 cycles/hour.  Total time of the data
accumulation could be 12 hours and longer. Each lidar
return profile was recalculated to the total scattering
coefficient using Klett’s method.!> As a result, by the
end of each series of observations, we had gotten a
spatiotemporal distribution of the aerosol scattering
coefficient.

The scheme of calculations of the spectral
characteristics is shown in Fig. 2. First, the parameters
were selected: the number of points N; and the number
of pairs of series for averaging N,, intervals of time At
and height Az; the method for calculation and the order
of the ARMA model p. Then the time series were
formed for the fixed values of height z; and time ¢4,
from which the trend was removed4: linear for the
ARMA model and polynomial of the 5th power for the
FFT. Then the matrices of coefficients A[k] and B[k]
were calculated for the ARMA model. At the next stage
the auto- and cross-spectra were calculated as well as
the coherency and phase spectra with the prescribed
frequency resolution.
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Fig. 2. Scheme of calculation of the spectral functions from
the lidar data.

The described scheme for calculation was repeated
many times for all heights by means of changing the height
zy =2z; + Az and time moment ¢; = t; + Aty;. The value
Aty = Ny At /4 that means 25% overlap of the neighbor
data, because time averaging was N;At. Averaging over
height was performed over N, spectra. When displacing
along the height, overlap of the neighbor data was 50%,

e., displacing along the height was N, Az /2 after each
averaging in the layer of the thickness N, Az. In the end,
the results obtained were displayed in one or another
form, but usually it was 2D mapping.

An example of the initial data in the form of gray-
scale pictures showing the spatiotemporal maps of the
scattering coefficient is shown in Fig. 3. The gray scale
is logarithmic. The scattering coefficient is represented
in reciprocal kilometers. Sounding was performed in
Tajon (South Korea) on the night 20 to 21 of
November, 1998. Time resolution was A¢ = 3 min, and

T 0085
£ 0.080
0.075
0.070 |

—o— 21 =1000 m
—h— zy = 900 m

T

T

.

0.045 [, o,

Scattering coefficient,

X
el / C\/\/A "ox 2
il Ve

20 November 1998

I.A. Razenkov et al.

height resolution was Az = 100 m. The situation shown
in Fig. 3 is interesting by the fact that cold air mass
passed over the observation site. Low-layer cloudiness
appeared after 1 a.m. at the height of 2.5 km, which
then slowly descended.
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Fig. 3. Spatiotemporal distribution of the aerosol scattering
coefficient obtained by means of the MPL lidar on November
20-21, 1998 in Tajon, Korea.

Results

All results presented here have been obtained from
the data shown in Fig. 3. The main parameter of the
ARMA model, which was changed in calculations, was
the order of the ARMA model. All calculations were
performed for Ny = 32 and N, = 10.

Figure 4 shows the time series (a) of the
scattering coefficient since 10 p.m. until 11:30 p.m. at
the heights of 900 and 1000 m, and the corresponding
auto-spectra (b), coherency (c), and phase (d) spectra.

—— FFT
[\, —— ARMA (p = 2)

1 Fas
j\ +=— ARMA (p = 6)

\
W:%
A

0.1F

0.01

Local time, hours

040
22: 00 22: 15 22: 30 22: 45 23: OO 23: 15

Normalized spectrum, rel. units

Frequency, cycle /hour

a b
sr " FFT
1.0@32%,\59,& ol —— ARMA (p = 2)
i . o —— ARMA (p = 6)
o R g o
0 "\ Z10
20.71 " 90t
SN o par o
506 | S-30
S$0.5 —e—FFT A —40f
041 DFF“%UD ——ARMA(p=2) 5|
03 . T ARMAG=6) L . %,
0 02 4 6 8 10 0 2 4 6 8 10

Frequency, cycle /hour
c

Frequency, cycle /hour
d

Fig. 4. Time series (a) and corresponding power (b), coherence (¢), and phase (d) spectra.
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Three curves are shown in Figs. 4b, ¢, and d. The
first curve (circles) corresponds to the spectra
calculated by classic method using FFT.4 Two other
spectra were obtained by ARMA method for p =2
(triangles) and p =6 (squares). Frequency resolution of
the ARMA method was selected four times higher than
the classic approach allowed. Figure 4 clearly
illustrates the possibilities of the parametric estimation
of the spectra. The higher frequency resolution and
greater stability of the obtained spectral estimates are
an evidence of this fact.

Comparison of the non-parametric and parametric
methods was carried out as follows. Coherency and
phase spectra were calculated for three values of the
frequency by FFT and ARMA methods at p = 2. The
frequency values were selected in the low-frequency
range (f =1 cycle/hour), in the middle of the range
(f =5 cycle/hour) and in the high-frequency range
(f = 10 cycle /hour). The result was displayed in the
form of spatiotemporal maps analogous to Fig. 3.
Temporal resolution of the spectral maps was about
1.5 hours, and the spatial resolution was 1 km. The
maps were filled by the method of linear interpolation.

Six spatiotemporal maps of the coherency spectra
calculated based on the data shown in Fig. 3 are shown
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in Fig. 5. The coherency spectrum obtained by non-
parametric method using the FFT technique for three
values of frequency f=1, 5, and 10 cycle/hour is
shown in Figs. 5a, ¢, and e.

The coherency spectra calculated using the non-
parametric approach for the ARMA model, p =2, for
the same frequencies are shown in Figs. 5b, d, and f.
Figure 5 shows that the coherency spectra for the
ARMA model have more regular monotonic structure in
time and space than the FFT spectra. It also follows
from Fig. 5 that a regular process occurred in the
tropospheric layer. The coherence took values below 0.5
that is presented by a light colored stripe. We will
discuss it in detail below.

Six spatiotemporal maps of the phase spectra
calculated based on the data shown in Fig. 3 are
presented in Fig. 6. The phase obtained by non-
parametric method using the FFT method for three
values of frequency f=1, 5, and 10 cycle /hour is shown
in Figs. 6a, ¢, and e. The phase spectra calculated using
the non-parametric approach for the ARMA model,
p = 2, for the same frequencies are shown in Figs. 6b, d,
and f. Figure 6 shows that the phase spectra for the
ARMA model have more regular monotonic structure in
time and space than the FFT spectra.
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Fig. 5. Spatiotemporal maps of the coherence spectra calculated by means of FFT (q, ¢, ) and the ARMA method at p =2 (b, d, ).
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Fig. 6. Spatiotemporal maps of the phase spectra calculated by means of FFT (q, ¢, ) and the ARMA method at p =2 (b, d, ).

The most monotonic is the map (Fig. 6d) obtained
for the ARMA model at /=35 cycle/hour. It is quite
regular, because the phase value is small at low
frequencies that follows from Eq. (4). The phase can be
“broken” at high frequencies for different reasons:
jumps through zero, low signal-to-noise ratio, and so
on. Comparison of analogous phase spectra in Figs. 6¢
and d for FFT and ARMA methods is also in favor of
the parametric approach. The characteristic ranges are
observed in the tropospheric layer in Fig. 6d, where the
phase was first positive, and then negative. An
explanation of such a behavior will be given below.

Comparison of the calculated results obtained at
different values of the order of the model p is shown in
Fig. 7, where the coherency (a, c, e) and phase
(b, d, ) spectra are shown for the ARMA method with
the values of the model p = 2, 6, and 10. It is seen from
Fig. 7 that the high-frequency components become more
pronounced as the order of the ARMA model increases.
It is clear that the order of the model p should be
chosen depending on the problem to be solved. It is
important to keep in mind that the spectral estimates
obtained at small p values are smoother. In our
opinion, it is always better to start analysis of the lidar
data with low p values, in order to obtain good idea on
the situation as a whole, excluding fine details.

According to this principle, let us consider in a
more detail the calculated results on the coherency and
phase spectra obtained by the ARMA method for p =2
from the same data on November 20—21, 1998. Let us
concentrate on the lower troposphere in the layer from
0.5 up to 3.5 km. Figure 8 shows the maps of the
aerosol scattering coefficient (@) and coherency (b) and
phase (c, d) spectra calculated based on it by ARMA
method. Two maps of positive (Fig. 8¢) and negative
(Fig. 8d) values of phase are drawn for more clear
representation is black-and-white mode. This made it
possible to distinctly isolate the region of the positive
phase values, i.e., the region where the aerosol
inhomogeneities moved upwards. As it follows from
Fig. 8c, it was observed since 8 p.m. until 1 a.m. The
height of the region of positive phase ascended from
below up to the height of 2 km.

Analogously, it follows from Fig. 8d that
after 1 a.m. the aerosol inhomogeneities began to
move downwards, because the phase is negative. The
region of downward motion descended from the height
of 2 km since 1 a.m. until 5:30 a.m. The regions of up
and downward motion are shown in Fig. 8 by straight
lines.

Let us give some physical explanations of the
results obtained. Diurnal behavior of air temperature on
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20—21 November 1998 near ground at the observation
site is shown in Fig. 9. It follows from Fig. 9 that
the invasion of the cold air mass was observed
approximately since 6 p.m. on November 20 until
2 a.m. on November 21, 1998. Dashed lines in
Fig. 9 show the behavior of temperature, if there were
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no specific events and everything was as before.
The time interval when the lidar operated is marked
in Fig. 9. The time interval when the decrease of
temperature was observed is marked as CA (cold air).
The area before coming of the cold air and after its
going out is marked as WA (warm air).
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Fig. 7. Spatiotemporal maps of the coherency and phase spectra calculated by the ARMA method.
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Fig. 8. Spatiotemporal maps of the scattering coefficient (@) coherency spectra (b), positive (¢) and negative (d) phase values. The

data were obtained on November 20—21, 1998.
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Fig. 9. Diurnal behavior of temperature near the ground
surface near the lidar. November 20-21, 1998, Tajon, Korea.

Cold air is always more heavy than warm one, so
it is always in the lower layer. The region of cold air is
shown in Fig. 10. Cold air enters as a wedge under the
warm air at the boundaries. Big arrow in Fig. 10 shows
the direction of the cold air mass motion. The location
of the lidar is shown by long vertical arrow. Naturally,
the moving cold air displaces warm air upwards, that
explains the positive values of the phase spectrum and
movement of this region upwards (see Fig. 8).
Correspondingly, the cold air mass when going out is
accompanied by the negative phase values, because of
warm air descended into position of outgoing cold air.
The region of down going motion moved downwards
(see Fig. 10). Small arrows in Fig. 10 show the
direction of the warm air motion as the cold air mass

passes.
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Fig. 10. The diagram showing the pass of the cold air mass
through the site of lidar observations.

Clouds presented at the back front of the cold air
mass are also shown in Fig. 10. In this connection, the
following fact revealed is interesting. It is seen from
the primary lidar data (see Fig. 8a) that the change of
the cloud height after 1 a.m. seems to correlate with
the data on the phase spectrum in Fig. 8d. But, at the
same time, no correlation is observed before 1 a.m.
when the phase has been positive and the region of
positive phase has elevated. It follows from this
important fact that the spectral parametric analysis
makes it possible to obtain additional, otherwise
“hidden” information about the processes occurring in
the atmosphere.

Let us consider the coherency spectrum in Fig. 8b.
It is seen that the coherence spectrum has low values at
the boundary of the cold air mass. This area was
revealed as a light stripe, which first was directed
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upwards, and then downwards. The explanation is
simple. Warm air is always above the cold air at the
boundary. That means, that there is a temperature
inversion. As known,16 the Archimedes force at
temperature inversion is negative, and so it prevents the
turbulent exchange between neighboring layers (see
Fig. 1). It explains why the coherency spectrum has
low values and was an indicator of the regions, in
which turbulent exchange between the neighboring
layers is difficult.

Conclusion

Thus, we have illustrated how the statistical
processing of lidar data can become useful. The fact is
obvious for us, that the parametric approach is more
versatile and has more possibilities in comparison with
the traditional classic Fourier analysis. Statistical
processing and use of the coherency and phase spectra
extends the list of parameters that can be calculated
based on the lidar data.

It has been shown that the use of the ARMA
model makes it possible to obtain the estimates of auto-
and cross-spectra with higher frequency resolution and
with the accuracy not worse than the non-parametric
approach provides. One should choose the order of the
ARMA model based on the problem to be solved, but in
any case, it is useful to start the statistical processing of
lidar data with low values of the order of the model p.

Spatial and temporal scales of the cold air mass
passing over the observation site have been estimated
by means of the spectral parametric processing of the
data obtained by the aerosol MPL lidar. The coherence
spectrum has served as an indicator of the position of
the boundary of the temperature inversion. The phase
spectrum has unambiguously shown the direction of the
slow vertical movement of the aerosol inhomogeneities.

Let us note that one can estimate the velocity
values!3 from the phase values, but it is out of the
frameworks of this paper. The ways for applying the
statistical ARMA model to analysis of the lidar data
can be different and depend on the problem stated and
inventiveness of researchers.

Acknowledgments

Authors would like to thank Prof. G.N. Glazov for
a number of valuable advices and the advanced idea of
using the parametric approach for analysis of the data
of lidar sounding.

References

1. E'W. Eloranta et al., J. Appl. Meteorol. 19, 598-605
(1980).

2. N. Sugimoto et al., Jpn. J. Appl. Phys. 37, 5598-5603
(1998).

3. Yu.S. Balin, I.A. Razenkov, and A.P. Rostov,
Oceanic Opt. 7, No. 7, 513-516 (1994).

Atmos.



I.A. Razenkov et al.

4. R.K. Otnes and L. Enochson, Applied Time Series Analysis
(John Wiley & Sons, 1978), 428 pp.

5. J.S. Bendat and A.G. Piersol, Engineering Applications of
Correlation and Spectral Analysis (John Wiley & Sons,
1980), 310 pp.

6. J. Van der Hoven, J. Meteorol. 14, No. 2, 160—164 (1957).
7. L.T. Matveev, Course  of  General — Meteorology
(Gidrometeoizdat, Leningrad, 1976), 639 pp.

8. S.L. Marple, Digital Spectral Analysis with Applications
(Prentice-Hal, Inc., 1988), 582 pp.

9. A.S. Monin and A.M. Yaglom, Statistical Hydromechanics
(Nauka, Moscow, 1965), Part 1, 640 pp.

10. T.T.M. Nieuwstadt and H.D. Van Dop, eds., Atmospheric
Turbulence and Air Pollution Modeling (Reidel Publishing
Company, 1981), 351 p.

Vol. 13, No. 10 /October 2000,/ Atmos. Oceanic Opt. 873

11. A.H. Nuttall, “Multivatiate linear predictive spectral
analysis  employing weighted forward and backward
averaging: a generation of Burg’s algorithm,” Naval
Underwater Systems Center Technical Report No. 5501, New
London, Conn. (1976).

12. ON. Strand, IEEE Trans. Autom. Control. AC-22, 634—
640 (1977).

13. I.A. Razenkov, H.K. Cha, D.H. Kim, and J.M. Lee,
Proceedings of SPIE 3983, 299—-305 (1999).

14. J.D. Spinhirne, IEEE Trans. Geo. Rem. Sens. 31, 48-55
(1993).

15. J.D. Klett, Appl. Opt. 24, No. 11, 1638-1643 (1985).

16. R.B. Stull, An  Introduction to Boundary Layer
Meteorology  (Atmospheric ~ Sciences  Library, Vol. 13)
(Kluwer Academic Publishers, Netherlands)



