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A mesoscale meteorological model is used for mathematical simulation of aerosol spreading under
conditions of a complex terrain. Aerosols are transported against the background of meteorological fields
calculated by this model. Two approaches are discussed: the semi-Lagrange method for calculation of
aerosol advection and the simple model of random walk of particles. An example of calculation of aerosol
transport over a steep hill is presented. In this example, the temperature field is calculated by the first
method, and the aerosol transport is calculated by the second method. The obtained pattern of aerosol
sedimentation agrees qualitatively with the existing theory.

Introduction

There exist a great number of practical and
theoretical ~problems dealing with transport of
atmospheric aerosols over a region having a complex
irregular structure. The pollutant spreading under
urban conditions, simulation of microclimate, and
others are among such problems. The existing
observational network is usually sparse, and obtained
data are not always representative for a region with a
complex structure.

In this connection, mathematical models of
atmospheric processes are necessary tools for obtaining
missing information.! Meteorological fields obtained
using these models serve a background for calculation of
advection and diffusion of aerosol particles.

Unlike many usual methods for calculating the
spatial and temporal distributions of meteorological
elements, here we discuss two methods dealing with the
behavior of individual aerosol particles. One of the
existing approaches to calculation of large-scale
advection is the so-called semi-Lagrange method.2:3 This
method minimizes computational errors, and in this sense
it has an advantage over the traditional Euler approach.
Section 1 presents a version of this method for the case of
interpolation schemes of the high order of approximation.
Then this method is used for calculation of the
temperature field in the mathematical model of
atmospheric dynamics described briefly in Section 3.

Another popular method of calculating particle
motion is the random walk method or method of
Lagrange diffusion.4 Models of random walk of
particles are free of the problems of computational
errors and algorithm stability and have some technical
advantages. In Section 2 we describe schematically a
simple model of Lagrange diffusion. This model is used
in Section 4 for simulating the passive aerosol spread
over a steep hill. The equations of the model for
meteorological background are given in Section 3.

0235-6880,/00 /12 1048-03 $02.00

1. Semi-Lagrange advection of aerosol

The considered method for calculating advection at
aerosol transport consists of two stages.

1. Determination of aerosol particle exit points,
i.e., the points from which the information on aerosol
distribution is delivered to the next time step;

2. Interpolation of the values of f from the closest
nodes of the spatial grid to the particle exit points:

xXp=x— J odt; flx, t +At) = flxp, D),

where At is a time step; xp is an exit point. The order
of interpolation determines the accuracy of the method.
In this paper we use the third order scheme by the
reasons that will be discussed below. This scheme is
constructed in the following way. The arbitrary function
[ at a node of the difference grid is expanded into a series
accurate to the terms of the fourth order. Free coefficients
of this expansion are determined through the values of
the function at the closest grid nodes. Let us denote
A= (xp —x;)/Ax. Here Ax is a spatial step. Having
solved the obtained system of linear equations, we
derive

fE+D) =F-A/2-2+2/2) +
+fitf O+ A2 /2 =N /2) + fiy (=N /6 + A3 /6) +
+fit (EA/3402/2 -2 /6).

Experiments with the schemes of different orders
allow the following conclusions:

1. Schemes of the first order have high numerical
diffusion.

2. Schemes of the second order are nonmonotone
and have small-scale wavy structure.

3. In the third order schemes under consideration,
both these types of errors are suppressed to high degree.
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4. The schemes of higher orders lead to
insignificant gain in the quality of solution with
significant increase of computational expenses.

2. Model of random walk

The simple model of Lagrange diffusion4 was
chosen for calculation of aerosol transport and
diffusion. This model is attractive due to its
mathematical simplicity and flexibility.

At the time ¢+ At individual aerosol particles
have the coordinates:

X (t + At) = xi(t) + Ul‘(t) At,
xg (¢ + At) = x3() + (Us(t) -

i=1, 2,
Vsed) At,

where x; is the coordinate of the ith particle; U; is the
full speed of the particle; Vq is the sedimentation rate.

The speed U; can be divided into the mean speed
u;, which follows from calculation by the meteorological
model (see the next section), and the turbulent

component u;. This component is calculated as follows:
ui(t + At) = R (A1) ui(t) + (1 = R (0" * 0, W;
Ry (At) = exp (= At /Ty).

Here W is a random-number generator for the Gaussian
distribution; Tp and Rj are Lagrange time scales and

autocorrelations;
o, = m )% o,=CQmy E)'? o, = 2my E)'2

For three types of stratification:

a0zl < 0.5 K,/100 m,

_9 - 0.5 K/100 m, ‘@

%20.5 K,/100 m,

we use the following sets of coefficients:
mq = 0.4, 0.54, 0.54; my = 0.30, 0.30, 0.37;
m3 = 0.30, 0.16, 0.09;
Ty, = K/o,.

Unlike Ref. 4, we have not a specialized equation
for calculation of the kinetic energy of turbulence.
Therefore, we find it from the equation

K =1+[cE,

where ¢ is an empiric constant, ¢ = 0.2 (Ref. 4).
The diffusion coefficient K is calculated using the
model of atmospheric thermodynamics.

3. Model of atmospheric background

To calculate meteorological fields, we use the
following equations of atmospheric dynamics:

Vol. 13, No. 12 /December 2000,/ Atmos. Oceanic Opt. 1049

du op a(G" p)

—— ot

dt = ox on
dv iy PG> P _

=fi(V=-V)—-fLh W+R,,

au + an -f (U - U)+Rv,
G1/2_9'
d—W+ _oP g U+ —p +R,,;
dr G2 an Cs =/ g 9 ws
a0 ds
ot = Rev qe = R
1 aP BV 13 33 1 Di
ot an%} U+GP V4 W

YL
T oot 0 ’

U=pG"?u; V=pG"?v; P=pG"?p,

where p' and €' are deviations of the pressure p and the

potential temperature ® from the ground state; s is
specific humidity; C; is the speed of the sonic wave; u,
and v, are the geostrophic wind components
representing the synoptic part of the pressure; f; and fo
are Coriolis parameters; ¢ is a gravitational constant; G
are Christoffel symbols.
For the arbitrary function ¢
do 09 6u¢ dvd) owd

ar ~ ot Tox "oy "oz

The terms R,, R,, Ry, Rs and R, describe the
processes of the subgrid scale in terms of the K-theory.
The turbulent exchange coefficients are calculated as:

P %2 [(D2) (1 = Ri)/2]'/2 at Ri <1,
m at Ri > 1.
Here D = Ou + ull.
The mixing way [ at every grid point is taken as
the shortest distance to obstacles in all directions. The
local Richardson number Ri is used in the form

g 96,/0n
D22 "

i=

A more detailed description of this model can be found,
for example, in Refs. 5 and 6.

4. Aerosol spreading over a hill

In this section, we present the results on aerosol
transport over a steep hill. In this case, the semi-
Lagrange method is wused for calculating the
temperature field in the model of atmospheric dynamics
from Section 3. The aerosol transport is simulated by
the random walk method.

A hill 500 m high is situated at the center of a
region 10 x 10 km. The region height is 5 km. The
geostrophlc flow comes from the west, uy=5m/s,

=0.
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The standard atmospheric stratification 3.5 K,/km
is taken as the ground state.

The absorbing layer is situated at the altitude of
1500 m. The computational grid consists of
31 x 31 x 16 points. The horizontal step of the grid is
Ax = Ay = 333 m; the vertical step increases with
height. The height of the hill increases gradually from
zero for the first 15 min. The aerosol source of 5000
particles is to the east of the hill; the particle
sedimentation rate is taken equal to 2 cm /s.

Figures 1 and 2 illustrate the aerosol motion over
the hill. The east-to-west vertical sections of the hill are
shown there.
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Fig. 1.

Scale 1:1.188

Fig. 2.

Figure 3 shows the aerosol concentration on the
surface within 20 min of physical time (top view). The
aerosol flow is markedly shifted in the northeastern
direction, in spite of the fact that the initial parameters
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of the problem are symmetric about the east-to-west
direction. Such a pattern of spreading is in agreement
with the existing theoretical concepts, because the
meteorological fields in this situation are shifted due to
the Coriolis force.”
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Fig. 3.

The results of these and similar test calculations
allow the conclusion that the semi-Lagrange method in
combination with the method of Lagrange diffusion can
be used for numerical simulation of aerosol spreading
over a region with complex terrain.
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