A.A. Mitsel et al.

Vol. 14, No. 1 /January 2001,/ Atmos. Oceanic Opt. 53

Compaction of data bank of absorption coefficients
of atmospheric gases

A.A. Mitsel,1:2) M.Yu. Kataev,1:3 and 1.G. Okladnikov?!)

D Tomsk University of Control Systems and Radioelectronics, Tomsk
2 [nstitute of Optical Monitoring,
Siberian Branch of the Russian Academy of Sciences, Tomsk
3) Institute of Atmospheric Optics,
Siberian Branch of the Russian Academy of Sciences, Tomsk

Received December 20, 2000

Methods of compaction of tabular data are considered. It is shown that compression with SVD
transform of matrices is the optimal method for tables of absorption coefficients. Examples of compaction

by different methods are presented and compared.

1. Statement of the problem

When designing optical systems for air monitoring,
optical communication systems, and other devices based
on the idea of measuring the radiation passed through the
atmosphere, the necessity for solving optical problems of
the gaseous atmosphere arises. The absorption coefficient
is the basic characteristic for solving the problems of
transfer of IR radiation in absorption bands. This
characteristic must be calculated many times for different
values of atmospheric pressure and temperature at different
frequencies. Calculation of the absorption coefficient can
take up to 75% of the total computational time.!

To save the computational time, we used an
approach based on single calculation of the absorption
coefficient at the nodes of some optimized 3D grid in
the variables v, T, and P. The obtained values were then
stored in one or several structured files with the
possibility of further calculation of k& in an arbitrary
point (v, T, P) using interpolation among the closest
nodes.12 Such files are called look-up tables (LUT).
Since the tables occupy large memory, they should be
compacted. Now there exists a wide spectrum of various
compaction methods, archivers, and data compression
utilities. In this paper, we consider some mathematical
algorithms of data expansion and conversion, as well as
popular archivers.

2. Methods of data compression
and archiving
2.1. Spectral methods of data compression
Discrete Fourier transform

Let N be an arbitrary natural number. Discrete
Fourier transformation of a vector
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To obtain the transformation inverse to
transformation (1), the nth equation in Eq. (1) is

multiplied by exp g\% nlB n=0,1,.., N-

obtained equalities are summed up. Then the
coefficients of xj, in the right-hand side of this sum are
equal to:
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Therefore, the transformation inverse to Eq. (1) has the
form:
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The feature of this transformation is that for many
signals X the spectral characteristics {y,} can
concentrate near the origin of coordinates. In other
words, several first elements in the Fourier transform
bear all the information sufficient for reconstruction of
the initial signal with some preset accuracy.3 Thus,
only selected elements should be stored for
compression. To determine them, some threshold
function is used. Only those elements are chosen to be
stored, whose absolute values are higher than some
threshold ones. Obviously, the choice of the threshold
values affects the degree of compression and the error
of reconstruction of the spectrum.

This method is not recommended for compression of
high-resolution IR spectra because of their pronounced
nonlinearity, but it can be used for compression of smooth
UV spectra or low-resolution spectra.
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Discrete wavelet transformation (DWT)

Wavelet transformation includes resolution of a
function of a signal or vector (for example, spectrum) into
simpler fixed blocks with different scales and positions.4

Like the TFourier transform, the wavelet
transformation deals with the signal f(A\) and transforms
it from the space of the signal (in which the
wavelength serves as a parameter) to another space.
However, in contrast to the Fourier transform, whose
frequency space is one-dimensional, the wavelet
transformation generates a 2D space with two
parameters: the scaling parameter ¢ and the spatial
parameter b. This property is an advantage of the
wavelet transformation as compared to the Fourier
transform. However, the wavelet transformation gives
incomplete description of a signal at given frequencies
along all the space of wavelengths. On the other hand,
while the Fourier transform wuses sine and cosine
functions as basis functions, for the wavelet
transformation there exist a number of methods for
choosing the parent wavelet W(A) and the basis
functions Y, ,(A), which can be obtained as follows:

Was (V) = a2 W - b) /a). (3)

To apply the discrete wavelet transformation to a
digitized spectrum, the following wavelet parameters
were taken: @ =2/ and b =2 k. From Eq. (3) we can
write that

Y (A =272 W@ A - k).

Here the variables j and &k are the values of
spreading and shift, respectively. Expansion of f(A) in
terms of wavelet functions {y; ,(N\)} is described by the
equation
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Herefrom we can conclude that the signal can be
presented as a series of the coefficients c,(e]‘).

In the fast wavelet transformation, these
coefficients can be calculated with the following

recurrence equations:
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where n varies from — o to + c. The variables /%, and g,
are called the coefficients of low-frequency filter (H = {/;})
and high-frequency filter (G = {g;}) filters, respectively.

A possibility to expand a signal for its compression
is provided by the wavelet transformation procedure
capability to concentrate a large fraction of the signal

total energy in ¢ at different levels of refining j. Since

the wavelet coefficients d” are generated with the help
of the high-frequency filter G, they reflect the high-
frequency information. The high-frequency component
in the spectra is, as a rule, noise, and it can be
rejected. Thus, only selected wavelet coefficients should
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be stored for compression. The coefficients are selected
using some threshold function. Now a few different
selection procedures are available. In one of them, only
those wavelet coefficients are selected, whose values are
higher than the threshold. Obviously, the choice of the
threshold affects both the efficiency of compression and
the quality of reconstruction of the spectrum. As a rule,
a higher threshold gives better compression, but worse
reconstruction.

The practical implementation4 has shown this
method to be hardly applicable to IR spectra,® because
they represent a lot of sharp peaks, in contrast to the
smoother UV and visible spectra. This leads to a great
number of high-frequency components in the wavelet
representation and increases the number of significant
elements. Thus, it becomes necessary to store a great
body of data, and the efficiency of the compression
decreases. Therefore, some additional methods, for
example, signal quantization and Hoffman coding,4
can be used in this case to improve the compression.
However, they improve compression only
insignificantly, but strongly increase the operational
time of the algorithm.

2.2. Mathematical methods of data compression

SV D transformation of data

Singular value decomposition (SVD) is a well-
known technique of orthogonal decomposition of data
sets. 6 The purpose of the algorithm is to find
orthogonal matrices U and V so that the matrix

Utav=x

be diagonal. Both these matrices are products of
orthogonal matrices referred to as Householder’s
reflections; T denotes a transposition.

The scheme of decomposition of an arbitrary m x n
matrix A can be used for compression of arbitrary data
sets.” Let the initial matrix be represented in the form
of a product of three matrices:

A=Uz V" (4)

where the orthonormal matrix U has the size m x n; £
is a diagonal m x n matrix; and V is an orthonormal
m % n matrix. The diagonal of Z consists of singular
values of the matrix A, usually, in the decreasing order.
We are interesting in the situation where most singular
values are low. Assuming that only L largest singular
values remain, we can rewrite Eq. (4) as
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where 0}, are the singular values (diagonal elements of
the matrix ). If, actually, only first L singular values
are significant, then the matrix A can be approximated
by rejection of the second term in Eq. (5). This
efficiently decreases the size of the decomposition
matrices, so that the matrix U acquires the size m x L,
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> becomes an L x L matrix, and V is n x L. Thus, the
accuracy of data representation is determined by L. In
practice, the number of eigenvectors {u;} often can be
decreased several times (sometimes, even tens times)
with only several percent loss in accuracy of
reconstruction of the initial values.

Using the SVD approach, the matrix of
monochromatic absorption coefficients A can be stored

as two matrices 121 and U:
A=uTa=3Vv"
The memory needed for these two matrices is tens
times less than that needed for the initial matrix A. To

obtain the initial matrix, one has simply to multiply A
by U, i.e.,

A=AU. (6)

The matrix A obtained by Eq. (6) differs from the
initial matrix A within a given error, which, in its turn,
is determined by truncation of the SVD matrices.

The singular value decomposition method has
demonstrated very good results in both the accuracy
and the efficiency of compression. Sufficiently high
speed of operation makes it one of the preferable
compression methods.

Karhunen— Loeve transformation

Factor analysis of the data matrix is the first stage
in the Karhunen — Loeve transformation.8=10 The factor
analysis operates with the data matrix of k rows and i
columns. Each row is a normalized spectrum. Each
column corresponds to a specific frequency in the IR
region. The aim of the factor analysis is to decrease the
size of the matrix from & % i to k X j, where j < i, and
the new matrix describes the initial data with a given
accuracy. !1

The second stage in the Karhunen— Loeve
transformation includes linear mapping of the initial
matrix into some optimized coordinate system with the
following conversion:

j
Tyj= 3 DpjEip

n=1
where E; , is the ith component of the nth eigenvector;
Dy, ; is the ith component of the kth row of the matrix
(i.e., kth spectrum in a library); Tp; is the jth
component of the kth row of the converted matrix, where
7 < i. The linear mapping is equivalent to determination
of the projection of the vector of each spectrum to
every axis in the new coordinate system. The projection
Dy, onto the most significant eigenvector becomes the
first value in the representation of the converted vector.
The following values are calculated for all j eigenvectors
used for description of the new coordinate system. Thus,
the initial i-dimension vector representation of the
spectrum is linearly converted into a j-dimension
vector, and since j < i, the data are compressed.
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The Karhunen —Loeve method was experimentally
tested by Hangac et al.!! The tests showed that this
method compressed IR spectra of the ether and some
other compounds five times with an accessible error.

Approximation by cubic polynomial

Procedures of approximation by cubic polynomials
can become another approach to the data compression.
Since the pressure and temperature dependences of the
absorption coefficient are rather smooth, application of
these procedures can give good compression with low error.

The Chebyshev approximation can be taken as a
procedure of approximation. The essence of this method
is in determination of N coefficients of a polynomial for
some table function. These coefficients then can be used
in calculation of the initial function at an arbitrary

N
point. For fixed N, the equation f(x) = gz Ch Tk_1(x)§»
=1

1
—5C s a polynomial in terms of x that approximate

the function f(x) in the interval [~ 1, 1]. An advantage
of this polynomial is that in its truncation to a lower
degree m << N the Chebyshev polynomial gives the best
approximation for the degree m as compared to other
polynomial schemes. Let N be large enough to provide
the accurate approximation of f(x). Then the truncated

ug
1
approximation has the form f(x) = QZ cp Thy (x)%aco
=1

with the same c;. Since T(x) is limited within £ 1, the
difference between the accurate and truncated
approximations does not exceed the sum of rejected cp,
k=m+1, .., N.

Four coefficients are needed for a cubic polynomial.
This is enough to reconstruct the initial vector with
high accuracy. The experiments conducted have shown
that the average error of approximation by a cubic
polynomial does not exceed 0.04% with the maximum
error less than 0.1%. The degree of compression depends
on the number of elements in the vector to be
compressed. Thus, for example, some vector of 10
elements will be compressed by the factor 2.5.

2.3. Statistical methods of data compression
LZW compression method

Lempel-Ziv-Welch (LZW) compression is a well-
known widely used technique. This method forms the
basis of such popular archivers as PKZIP, LHA, and
ARJ. This method has a very simple algorithm. LZW
compression replaces character strings with some codes
without any analysis of the input text. Compression
occurs when the code replaces the character string. The
codes generated by the LZW algorithm can be of any
length, but they must contain more bits than the unit
symbol. By default, the first 256 codes (when 8-bit
symbols are used) correspond to the standard set of
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symbols. Other codes correspond to strings processed by
the algorithm. 12

It is rather hard to characterize the efficiency of
some compression technique. The degree of compression
is determined by different factors. The LZW compression
stands out of other techniques, when it meets a data
flow containing repeated strings of any structure.
Therefore, it operates very efficiently with text data.
The degree of compression can achieve 50% and higher.

However, some difficulties can arise in the case of
compression of data files. Depending on the initial data,
the result of compression may be both high and low.

Hoffman method

The Hoffman method is a statistical compression
method that decreases the mean length of a code word
for alphabet symbols. The Hoffman code is an example
of the optimum code in the case that all probabilities of
appearance of symbols in a message are integer negative
powers of two. The Hoffman code can be constructed
by the following algorithm.

1. All alphabet symbols are written out in a series
in the increasing or decreasing order according to their
probability of appearance in a text;

2. Two symbols with the lowest probabilities are
sequentially united in a new compound symbol, whose
probability is assumed to be equal to the sum of
probabilities of the constituents; finally, we have a
tree, whose every node has the probability equal to the
sum of probabilities of all lower nodes;

3. The way to every leaf is constructed by
marking, for example, the right direction by 1 and the
left direction by 0.

Some given distribution of frequencies can be
characterized by several Hoffman codes. The “canonical”
Hoffman tree can be determined by choosing one of
possible trees. This canonical tree can be very compact,
carrying only the length in bits of every code word. This
method is used in most archivers.

Arithmetic coding

This method is based on the idea of transformation
of the input flow into one floating-point number.
Naturally, the longer a message, the longer the resulting
number. At the output of an arithmetic compressor, we
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have some number less than 1 and larger than or equal
to 0. The initial series of symbols can be unambiguously
reconstructed from this number. 3

Experiments at different levels show that the
arithmetic coding always gives results no worse than
those of the Hoffman coding. In some cases, the gain
can be significant. However, the arithmetic coding
algorithm is far more time-consuming comparative to
the Hoffman one because of a greater number of the
necessary computations. The arithmetic coding can be
used in the cases that the degree of compression is more
important than the time needed for compression.

3. Conclusions

Now there exist a wide spectrum of various archivers
and utilities of data compression, but the main decision
criteria are, first, the decompression speed and, second,
the possibility to retrieve an arbitrary fragment of the
initial data set from the compressed file without its
complete decompression. Most of the available
algorithms do not meet these conditions. Therefore, the
attention was paid to various algorithms of data
decomposition and transformation based on mathematical
compression and spectral analysis. These algorithms are
singular ~ value  decomposition, discrete  wavelet
transformation, and Karhunen—Loeve transformation.
All these algorithms are very fast and capable of
operating with any fragment of the compressed data.
Besides, since the initial data are initially generated in
the text form, the compression algorithm is, in some
sense, a simple conversion into the binary data format.
This additionally decreases the size of the stored
information without loss in accuracy.

To test the efficiency of different compression
methods, a number of experiments were conducted. The
test results are given in the Table and in Figs. 1 and 2.

As is seen from the Table, the SVD compression
demonstrates very good results in the accuracy and
speed. It gives fivefold compression and passes ahead of
the popular archivers, simultaneously providing the
accuracy comparable with that given by modern methods
of line-by-line calculation of absorption coefficients.
Unfortunately, the wavelet transformation, in spite of a
high speed, gives low degree of compression and high
error of reconstruction because of a small number of
elements in the vectors to be compressed.

Table. Comparison of data compression methods

Decompression chrcc‘ Mean error, Maximum error,
Compressor . of compression, o o
time, s . % %

times
SVD 0.44 S5 0.001 Less than 0.05
Wavelet 0.28 1.38 1075 - 0.7 0.008 — 2.94

RAR 0.47 3.25 0 0
Z1P 0.21 3.25 0 0
ARJ 0.23 3.16 0 0
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Fig. 1. Initial and reconstructed absorption coefficients at SVD compression (a); errors of reconstruction of absorption coefficients
at SVD compression (b); gas — ozone; height H = 0 km; pressure of 0.91 atm; T = 278.2 K.
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Fig. 2. Initial and reconstructed absorption coefficients at DWT compression (@); errors of reconstruction of absorption coefficients
at DWT compression (b); gas — ozone; height H = 0 km; pressure of 0.91 atm; T = 278.2 K.

As compared to SVD, the archivers provide a
lower degree of compression, although they introduce
no errors. In the general case, they cannot be used for
compression of tables, since they do not allow
retrieving arbitrary data from archivers, but they can
be used for extra compression or in the case that no
error is required.
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