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General equations have been derived for studying the effect of the degree of vibrational excitation
of an absorbing molecule on the isotropic part of the intermolecular interaction potential. The
intermolecular potential for the collision of two He atoms is analyzed numerically. The effective operator
of the intermolecular potential is constructed with the help of coupled cluster theory of rotational-
vibrational interactions. The asymptotic series of the perturbation theory for the effective operator of the
intermolecular potential in the first Pade approximant is evaluated.

Introduction

Studying the vibrational dependence of the
potential on the intermolecular interaction is an urgent
problem in molecular spectroscopy. The dependence of
the intermolecular potential (IMP) on the degree of
vibrational excitation of an absorbing molecule is most
pronounced for lines formed by transitions to highly
excited vibrational states, when intramolecular effects,
such as anharmonism of vibrations, Fermi and
Darling — Dennison  accidental resonances become
dominating.

The relaxation parameters of spectral lines:
halfwidth, line shift, cross-relaxation parameters,
determine the shape of the line profile, and they should
be calculated to rather high accuracy for correct
assignment of high-resolution experimental data.

To calculate the relaxation parameters, one should
first determine IMP constants and their vibrational
dependence. These data are, as a rule, unavailable in
the literature, and therefore reconstruction of IMP
characteristics, in particular, for highly excited
vibrational states from measured line shifts!=3 by
solving the inverse problem or calculation of the
vibrational dependence of IMP% are rather urgent
problems. It should be noted that some ab initio
calculations of the intermolecular interaction potential
are available,® but only for the ground state neglecting
its dependence on the degree of vibrational excitation.

In the theory of spectral line broadening, it is
accepted to consider the IMP of two colliding
molecules as a sum of two terms: isotropic and
anisotropic (depending on orientation of molecules)
parts: V(R) = Vieo(R) + Vaniso(R, 6), where R is the
separation between the centers of gravity of the
colliding molecules; 0 is a set of angles describing their
mutual orientation. The aim of this paper is to derive
general equations for studying the dependence of the
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isotropic part of the IMP on the degree of vibrational
excitation of a molecule. We consider the vibrational
dependence of the isotropic part of the intermolecular
potential, since it is just this part of the IMP that
determines the coefficients of line shift by buffer-gas
pressure.!=3 The asymptotic expansion of Vi, (R) in an
inverse power series in R is grouped in such a way that
the first terms of the new series have a correct
asymptotic ~ dependence on  the intermolecular
separation. The re-grouped series is then summed with
the use of Pade approximants. To determine the
vibrational dependence, we use the theory of limiting
linked schemes® for ordering rotational-vibrational
interactions. In the limiting scheme corresponding to
the model of the so-called overexcited oscillator,® the
effective operator of the potential Vi, (R) is
presented as a power series over vibrational variables
for an elementary rotational excitation. To sum up the
asymptotic series of the perturbation theory for the
effective operator of the potential Vi,(R), we also
apply the method of Pade approximants. The potential
Viso(R) for different systems of colliding molecules is
analyzed in the approximation of the first Pade
approximant for different overtones and combination
tones.

The results of this work can be used in data banks
and atlases of spectroscopic information; they are also
useful in solving problems of the laser beam
propagation through the atmosphere. Besides, the
obtained results may prove to be useful in calculation
of the time of V—V-exchange and V—T-relaxation.

Dependence of line shift on the
isotropic part of intermolecular
potential

As was shown earlier!™3 the shift of lines due to
transitions to highly excited vibrational states is
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determined mostly by the change of the isotropic part
of the potential V;,,(R) at vibrational excitation of the
absorbing molecule. Within the framework of the
Anderson — Tsao — Curnutte method, the relaxation
parameters (line shift and halfwidth) are described by
the following equation?:

Yir = ;¢ =% > p() J F(v) vdo x
J 0
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S =% j dt [B0Viso(R) Do~ ;0Viso(R)Doid. (3)
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Here i and f are quantum numbers of the initial and
final vibrational states; y;s is the line halfwidth; &; is
the line shift; p(j) is the density matrix of the
disturbing molecule; F(v) is the Maxwell distribution
function; b, is the Anderson truncation parameter;
Sir(j, b, v) is the truncation function written as a sum of
terms of the first and second orders of the perturbation
theory. The real part of S, contributes to the line
halfwidth, whereas the imaginary part of S; and S
determines the line shift. In Eq. (3) the function S
depends on the difference of the matrix elements of the
operator Vi,,(R), where [o; Oare the vibrational wave
functions of the initial state, and Ooy Oare those of the
final state. The potential Vi,,(R) can be represented as
a sum of contributions coming from the inductive and
dispersion energy of interaction of colliding particles:
VisolR) = Vina(R) + Vgisp(R).  Using  the  London
approximation, 89 we can write the isotropic part of the
IMP as an inverse power series in R:

© C
Vie(R) = 3 o

_n
R”
n=6

In Eq. (4) C, are the constants depending on some
integrals including electronic wave functions. In the
general case, C, depend on the instantaneous
configuration of nuclei and are functions of vibrational
coordinates. The series (4) is an example of application
of the perturbation theory, in the Rayleigh—
Schrodinger formalism, for the case of remote
interaction. In practical calculations, the vibrational
dependence of the coefficients C,, is usually neglected
and consideration is restricted to the first term of the
series (4) that is proportional to 1,/R6. As known, the
first term of Eq. (4) corresponds to the sum of the
inductive interaction of the dipole—induced-dipole type
and the dispersion interaction corresponding to the
dipole—dipole potential. In calculation of the dispersion
part of the potential, the Unsold8® approximation is
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often used. In this approximation, the constants of the
dispersion potential are expressed through polarizability
and the first ionization potential of molecules. Then,
integrating Eq. (3) and turning from the separation R
to the impact parameter b, we can obtain:

31t
S1=7 8hobs

3 _
x Hu — up) @y + 13 (o~ ap + 5Ty (o~ apl. (3)

In Eq. (5), 0y and Py are the mean polarizability and
the mean dipole moment of the disturbing molecule; a;
and oy are the quantum-mechanically mean values of
the polarizability in the initial and final vibrational
states of the absorbing molecule, respectively; y; and py
are quantum-mechanically mean dipole moments in the
initial and final states, respectively; €; and €, are the
ionization potentials. The function S{ in Eq. (5)
includes the contributions of only the inductive (the
first and second terms in braces) and the dispersion
interaction (the third term in braces).

The calculations made in Refs. 1-3 showed that
the contribution of the function S to the shift of lines
of HyO, SO,, CO,, and NO; molecules at broadening
by Ny, O, and inert gas atoms dominates for lines due
to transitions to highly excited vibrational states. For
example, the contribution of the function Sy in the
form (5) to the shift of H,O absorption lines at
broadening by inert gases makes up from 75 to 85% of
the total shift for lines due to transitions from the
ground state to the vibrational state (301). In Refs. 1—
3, the polarizability ay of the excited states was
determined through fitting the measured shifts of some
lines, for other lines the shift was calculated by
Eq. (5).

In Ref. 10, to calculate shifts of HyO lines formed
by transitions from the ground vibrational state to the
states (301) and (221), the approximation (5) was also
applied, but with the use of the ab initio polarizability
of the water molecule. The calculated results from
Refs. 1-3 and 10 well agree with the experiment.
Reference 2 presents the vibrational dependence of the
parameter oy for the HyO molecule; this dependence
was obtained from analysis of the measured line shifts.
In Ref. 11, the vibrational dependence of oy of the H,O
molecule was analyzed numerically using Pade
approximants.

Thus, the pressure shifting of lines can be a source
of data on the vibrational dependence of the isotropic
part of the intermolecular potential or (within the
framework of the Unsold approximation) serve for
estimation of polarizability of molecules in different
vibrational states.

In the general case, the isotropic part of the IMP
Viso(R) can be presented as an asymptotic series with the
coefficients C,, depending on the normal coordinates ¢:
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® C,(q)
ViolR) = 3 TR ®)
n=6

It is significant that the series (6) is alternate.
Earlier in Ref. 4 it was shown that the expansion of the
IMP represented as a sum of Lennard — Jones potentials
for every pair of atoms in a power series in terms of
1 /R has sign-alternate coefficients.

Since the series (6) is asymptotic, a proper
summation method should be applied to calculate its
sum. In this case, we can base on the following
reasoning. The function corresponding to the series (6)
or terms of the series obtained through its conversion
should have a certain “shape,” i.e., they must have one
minimum and a repulsion part at R - 0 and tend to
zero at R — oo. Therefore, it is worth first regrouping
Eq. (6) in the following way:

1
Viso(R) = RS x

C
N %G(q) N 7(C])|_| A |—f|:8(6]) N

Colq) ]
R O "OR 5

RO 5 (7

Here A is a formal parameter, which is assumed equal
to unity in the final result. The converted series (7)
must have correct asymptotic because of different signs
of the coefficients C,(g) and C,+((q).

Using then [0/1] Pade approximants for
calculation of the sum of the series (7), we obtain:
C(q)
Colq) + 7RCI
V[O/H(R) — L (8)
150 RS Cs(q) Co(q) -
1+ R2 + —R3

It can readily be shown that the isotropic part of the
IMP in the form (8) has a correct asymptotic. The
formally presented conversion of the series and its
summation by Eq. (8) are equivalent to sequential
application of Cesaro!2 and Pade!3 summation methods.
In practical calculations, the coefficients Cg(q),
Cy(q), ... can be estimated, for example, by
representing the IMP as atom-atom potential.

Below we consider normal molecules, in which
vibrations are small. Expand Eq. (8) in a power series
over normal coordinates:

Viso(R) = pO(R) + z pi(R) q; + z pij(R) q; 6]]‘+ . (9
i ij

Here po(R), pi(R), and p;}(R) are the coefficients
consisting of the zero, first, and second derivatives of
the coefficients C; (i =6, 7,8,9) from Eq. (8) with
respect to the normal coordinates at the equilibrium
configuration of a molecule. For example, the zero term
of the series (9) is presented as
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From this equation we can see that the series (9) is
alternate. Equations (8)—(9) determine the vibrational
dependence of the isotropic part of the IMP. They can
be used in Egs. (1)—(3) for calculating the coefficients
of pressure shift of spectral lines. On the other hand,
the measured line shifts can be used for determining the
coefficients of the expansion (9). Thus, according to
Egs. (1)=(3), the further task is to determine the
matrix elements of the isotropic part of the IMP in
different vibrational states. In this case, it is necessary
to take into account intramolecular interactions that
become dominating for the spectra in the near IR and
visible regions.

Figure 1 illustrates the use of the derived
equations by showing the isotropic part of the IMP
calculated by Eq. (8). For calculation we took the
following values of the coefficients C,: Cg=-1,
C;=2, Cg=-0.01, C9g=0.001 (in atomic units).
Such values of the coefficients C, correspond to
interaction of two He atoms.8 We can see from the plot
that Eq. (8) gives a correct asymptotic of the isotropic
part of the IMP at both short (R <2) and long
(R > 2) separation. In Fig. 1, the area R <2
corresponds to the repulsion part of the IMP, and the
area R > 2 corresponds to the attraction.

0.003 | Vigo, a.u. of energy
0.002
0.001
0 L L L L A )
2.5 3 3. 4.5 R,a.u.
of length

Fig. 1. [0/1] Pade approximant of the isotropic part of IMP
as a function of the intermolecular separation R.

The dependence of the IMP on the vibrational
excitation of the absorbing molecule was assessed in
Ref. 4, in which the potential was presented as a sum
of atom-atom potentials. The Lennard —Jones potential
was used for coupled atom—atom potentials and its
expansion into the Taylor series over vibrational
coordinates was obtained. Numerical estimates4 showed
that the contribution to the line shift from the
vibrational addition of the atom—atom potential for the
0—2 vibrational band of the HF molecule at collision
with an Ar atom makes up about 11%.
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Effective operator of the isotropic part
of intermolecular potential

The isotropic part of the IMP V,,(R) depends on
the intermolecular separation R and on the coordinates
describing vibrations of nuclei of the colliding particles.
The absorbing and distorting particles have different
molecular  characteristics (harmonic frequencies of
vibrations, equilibrium rotational constants) and
different parameters of smallness A = (2B./w)!/2.
Therefore, the isotropic part of the IMP should be
expanded in terms of nuclei shifts from the equilibrium
positions in an absorbing molecule and a molecule-
thermostat. The simplest way to solve this problem is
to construct the effective operator of the isotropic part
of the IMP by the method of contact transformations.
The isotropic part Vi,(R) can be expanded into a series
over the normal coordinates in the form (9) with the
coefficients being derivatives of Vi,,(R) with respect to
the normal coordinates:

Viso(R) = z =5 0 EV "(R) + {HMH

n=6 m12

1 3N-6 2ym(R)
+ 2 Hiaq, 3 Bql q; + (10)

where ¢; are dimensionless normal coordinates;
(" vm /dqiy 8q;,)e are derivatives of Vi,(R) with
respect to the normal coordinates at the equilibrium
configuration of the absorbing molecule. It should be
noted that Vi,(R) is independent of the orientation of
molecules, i.e., it is scalar, and therefore the
coefficients in the series (10) are scalar too. Let us give
the details of calculation of the effective operator of the
isotropic part of the IMP V(R). The effect of
anharmonicity of the vibrations of the nuclei of the
colliding particles on Vi,(R) was considered in the
limiting scheme of ordering rotational-vibrational
interactions that was called “overexcited oscillator” in
Ref. 6. In this ordering scheme, the vibrational (Hoyg)
and rotational (Hyy) energies can be estimated by the
following equations:

Hyy OXEE, OX? X 2" E,, Hgy OX* E, OX? . (11)

Here E, is the electronic energy of the first excited
state; @y, is the typical molecular vibrational
frequency; X is the Born—Oppenheimer parameter;
€ - 0. It should be noted that the anharmonic part is
separated automatically in expansion of the rotational-
vibrational Hamiltonian H,, of a quasi-rigid molecule
only in this ordering scheme. That is, in the limiting
scheme of “overexcited oscillator,” H,, can be
represented in the form of an ordered sum:

HY =g, + Hy = 5

m=1

M
m0 + z ann)ﬁ (12)
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Here the superscript (M) means the limiting
scheme “overexcited oscillator,” in which it is assumed
that the purely vibrational energy achieves the values
of the order of the electronic energy. In Eq. (12)
Hyy= Hy; = 0. In the ordering scheme (M), vibrational
contact transformations for the effective IMP operator
are performed in terms of increasing powers of the
vibrational  variables, and unitary  vibrational
transformations ~ of  the  method of  contact
transformations in the ordering scheme (M) have the
form
TS0 TS0 TSn TS T

Usf=e S TS (13)

The transformed operator Vi,(R) can be
presented as a power series over vibrational operators:

Giso = U;} Viso UM = 2 (giso)m- (14)

m

To take into account the effect of anharmonicity
in nuclei vibrations on Vi, (R), the main part of this
series can be approximated as

P+ Voot Podet . (5

It should be kept in mind that the operators with
even powers of the vibrational variables in Eq. (15)
have both diagonal and off-diagonal elements in the
basis of the Hamiltonian Hyy (sets of harmonic
oscillators of a molecule). The operators with odd
powers of vibrational variables in Eq. (15) have only
off-diagonal matrix elements in the basis of the
Hamiltonian H,), and the vibrational operators of
power m in an assigned mode have matrix elements of
the type @o + mO @Oo + m — 20 ...<ovlo + 10 The
part of the effective IMP operator Vi, (R)Odiagonal in
the basis of the Hamiltonian Hyj can be given by the
equation

ﬁiSODHZO — Hyg |ﬂisomz 0. (16)

The operator (Vig(R))yg transformed by the method of
contact transformations can be expressed through
commutators with the vibrational generator S3q in the
form

(Eiso)ZO = (Viso)20 = 1 [S30, (Viso)10]- an

Let us give complete equations for the diagonal
M Viso(R))9o0 and off-diagonal ((Viso,(R))99)nq parts
through molecular constants and the expansion
coefficients (10) — derivatives of Vi, (R) with respect
to the normal coordinates. For the diagonal part we
have:
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And for the off-diagonal part

2 (Vo[

((giSQ)QO)nd = z aql 0(]] |-—e| -

i,j,0,0"

Wy,
(o + 00'w)2 — e
w; + 00w )

- Z cDijm

m

(V) g o
[@ Vw0 (19)

X |:| aql ggdl al (1 0— G') (1 _Ai]')-

In Egs. (18) and (19), we use the following
designations: @; = q; + ip; are the ladder-type operators;
0 = +1; ®;;, are cubic constants of anharmonicity; w,
are harmonic frequencies of the vibrations.

Let us consider some consequences following from
the group-theory analysis of the series (10) and (15).
The part Vi,(R) is a scalar value and under operations
of symmetry group of a molecule, it transforms
according to the totally symmetric representation.
Consequently, the first term of the series (15) (Vig)1o
contains only operators of totally symmetric
coordinates. In other words, the coefficients in the first
term of the series (10) for all symmetry groups of
quasi-rigid molecules are derivatives with respect to the
completely symmetric normal coordinates:

(Viso)10 = z DE aqlsoa ql (20)

i0Aly

Summation is performed over all i belonging to the
symmetry group A1'g. The selection rule for determining
non-zero coefficients in Egs. (18) and (19), with the
allowance made for the fact that (Vi) =A1'g, takes
the form [F%ib] O A1'g, where [riib] means the
symmetric square of a vibrational representation. Since
Myib =Y Dri, where I'; are representations of the modes
i
including in Iy;,, we have

2
(2] = %zﬂrﬂ %z SO0y o @)
i i if

In other words, the selection rule (20) breaks into a
series of equations for irreducible representations of
different modes (21).

Consider the part {Vi,(R))Odiagonal in the basis
of the Hamiltonian Hoy:
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§1§0D DZ (leo)mo[| |:([9150)20D+ |:([9150)40D+ ~(22)

m

The first diagonal [1,/1] Pade approximant is
written in the form

V.[1//1] - ﬂviso)zolﬁ (23)
180 |:t[Viso)QOD_ E([Viso)40|:|.
For triatomic molecules, the obtained equation can
be written with the allowance for the matrix elements
of the vibrational operators ¢:

. 1
" ((Vig)a0)* (o; + )
Vi[so/ = Z , ; - (24)
i=1,2,3 (Viso)a0 = Viso)ao (0; +3)

It should be noted that Eq. (24) is similar to the
[1/1] Pade approximant for medium polarizability
describing its dependence on the vibrational quantum
numbers for quasi-rigid molecules like HyO (Ref. 11).
For diatomic molecules having only one vibration,
i=1, v;=0. Thus, we have obtained asymptotic
estimates for the infinite series of the effective operator
of the isotropic part of IMP in the form of the first
diagonal Pade approximant. Using Egs. (23) and (24),
we can calculate the sum of the IMP series with
diagonal matrix elements Vi,,(R) found in Ref. 4 for
diatomic and triatomic molecules with the Lennard—
Jones atom—atom potential.

Conclusion

In this paper, we have obtained asymptotic
estimates in the form of the first Pade approximant for
infinite series of two types. Equation (8) is an
asymptotic estimate of the isotropic part of IMP with
the coefficients C,, dependent on the vibrational
coordinates g. The [0,/1] Pade approximant has been
derived for the isotropic part of the IMP; it correctly
describes the asymptotic as the intermolecular
separation varies within 0 <R <35 (see Fig. 1).
Equation (24) is an asymptotic estimate in the form of
the [1,/1] Pade approximant for the effective operator
of the isotropic part of the IMP with the explicit
dependence on the vibrational quantum number.

Acknowledgments

The authors are thankful to  Professor
S.D. Tvorogov, Corresponding Member of the Russian
Academy of Sciences and leader of the School “Optical
Molecular Spectroscopy and Radiative Processes in the
Atmosphere,” for the attention he paid to this work.

The work was partially supported by the
Committee on Grants of the President of the RF in



786 Atmos. Oceanic Opt. /September 2001,/ Vol. 14, No. 9

Support of Scientific Schools (Grant No. 00—15—
98589).

References

1. A.D. Bykov, E.A. Korotchenko, Yu.S. Makushkin,
Yu.N. Ponomarev, L.N. Sinitsa, A.M. Solodov, V.N. Stroinova,
and B.A. Tikhomirov, Opt. Atm. 1, No. 1, 40—45 (1988).

2. V.E. Grossman, E.V. Browell, A.D. Bykov, V.A. Kapitanov,
E.A. Korotchenko, V.V. Lazarev, Yu.N. Ponomarev, L.N. Sinitsa,
V.N. Stroinova, and B.A. Tikhomirov, Atm. Opt. 3, No. 7, 617—
630 (1990).

3. V.V. Lazarev, Yu.N. Ponomarev, V.N. Stroinova, B. Sumpf,
O. Fleishmann, J. Waschull, and H.D. Kronfeldt, J. Mol.
Spectrosc. 173, 177-193 (1995).

4. A.D. Bykov and V.N. Stroinova, Proc. SPIE 4063, 217-223
(1999).

A.D. Bykov et al.

5. D.W. Schwenke, S.P. Watch, and P.R. Taylor, J. Chem.
Phys. 94, 2986—2999 (1991).

6. V.M. Mikhailov, Atmos. Oceanic Opt. 14, No. 1, 15-28
(2001).

7. D. Robert and J. Bonamy, J. of Physics 40, 923-943
(1979).

8. I.G. Kaplan, Introduction to Theory of Intermolecular
Interactions (Nauka, Moscow, 1982), 311 pp.

9. C. Huiszoon, Molecular Physics 88, 865—885 (1986).

10. R.R. Gamache, R. Lynch, and S.P. Neshiba, J. Quant.
Spectrosc. Radiat. Transfer 59, 319-335 (1998).

11. V.M. Mikhailov and V.N. Stroinova, Proc. SPIE (2001)
(in press).

12. G.H. Hardy, Divergent Series (Oxford University Press,
London, 1949).

13. G.A. Baker Jr. and P.R. Graves-Morris, Pad'e
Approximants (Addison-Wesley, Reading, MA, 1981).



