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Effect of nonlinear interaction of molecules on their emission
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The effect of nonlinear interaction of molecules on the intensity of radiation emitted by them at
transitions between vibrational levels is studied theoretically. For this purpose, the solution of a

nonlinear Schrodinger equation describing the state of interacting diatomic molecules is analyzed. It is
shown that in the case that the kinetic degree of freedom of molecules can be considered as a heat bath,
the population of vibrational levels is close to the Boltzmann distribution in a broad range of
temperatures. However, when the energy of heat motion becomes less than some critical limit, rather fast
destruction of excited levels should occur. Such a behavior of the population density of quantum states
should result (as the temperature of a molecular ensemble drops down below some limit) in practically
complete disappearance of spontaneous and stimulated emission.

Molecular gases are a thoroughly studied object.
In particular, it is known that in a broad range of
temperatures the population of quantum levels of gas
molecules  obeys the  Boltzmann  distribution.
Nevertheless, experiments on determination of gas heat
capacity show that at the temperature below some
critical values this distribution can be violated for
rotational and vibrational degrees of freedom.

As it is well-known, as the temperature decreases,
the dependence of gas heat capacity on the internal
degrees of freedom disappears instantly first for the
vibrational degrees of freedom of a molecule and then
for the rotational ones.! Such a behavior of heat
capacity shows that gas molecules at the temperature
below some critical value are at low energy levels. This
phenomenon is usually explained by the translational
kinetic energy insufficient for efficient collisional
excitation. This explanation has a purely qualitative
character and does not answer a lot of questions, in
particular, why the efficiency of vibrational and
rotational excitation at the temperature below some
critical value is practically independent of the Maxwell
distribution wing corresponding to high translational
velocities of molecules. Besides, there is no answer to
the question what is the character of emission at the
temperature below this critical limit.

This paper gives one of possible explanations for
such a behavior of the population of vibrational levels
of diatomic gas molecules. It is shown that it is mostly
caused by molecular interaction, due to which the
molecular ensemble becomes a nonlinear system with
some equilibrium states. At the temperature below some
limit, population of excited states becomes impossible,
and this leads to the absence of spontaneous and
stimulated emission.

In our experiments, an oscillator was used as a
model of an individual molecule. Such modeling allows
the actual molecular structure to be ignored.

To take into account the effect of the environment
on the individual quantum system, we selected the
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method proposed in Refs. 2 and 3. In this method, the
state of the studied object is described by such a wave
function that the mean values calculated with it
coincide, in some approximation, with the values
obtained using the formalism of the density matrix. For
this purpose, the Feynman method is used.4 The effect
of the environment on the considered subsystem is
taken into account through the corresponding definition
of the Feynman propagator.

In Ref. 5 it was shown that reasonably universal
form of the Hamiltonian for interacting molecules in the
stationary state is the following:

H=Hy+ 2 y|B|y). (1)

In Eq. (1) H o is the unperturbed Hamiltonian of an

isolated molecule; A and B are the operators describing
the model interaction of the molecule with the
environment; A is the parameter characterizing the
interaction intensity.

As is well-known, in the Feynman method, to
determine the amplitude of probability of quantum
system transition from one state to another, the method
of functional integration is used. The contributions to
the amplitude of all possible alternative ways from the
initial to the final states of the quantum system are
summed up, and the contribution of one trajectory is
represented as a phase factor of the following form:

¢ = const - exp [iS(r, r{) /1], ()

where S(r, r{) is a classical operation calculated along
this way from the point r; to r. Finally, we have a
propagator meeting the following group multiplication
rules:

K(r,r()= jK(r, 1)) K(ty,1;) dry. (3)

—0o0

Using Eq. (3) and comparing the probability
amplitude at two close instants, we can easily obtain
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the Schrédinger equation.4 Having written the Lagrangian
accounting for nonlinearity of the molecular ensemble,
using the functional of the wave function, and having
averaged the propagator over collisional perturbations,
after some transformations we can write the equation
valid in the dipole approximation:

a1 T+ + Uy +
o =T+ Tt alw+ Uy
+®(y) vy~ (E-d) y. (4)

In Eq. (4) T is the kinetic operator, U is the
potential energy operator of an oscillator; the parameters
o and y are some positive values connected with the
environment density and temperature (it can be shown
that the higher the environment density, the higher «;
and y increases with the increasing temperature (see
below)); E is the external electric field, and d is the
dipole moment. In the simplest case, the functional of
the wave function describing, in essence, the self-action
of the considered system through the environment has
the following form:

<1>(\|/)=M<w|3|w>=ﬁ<wﬁ+x|w>. (5)

In the case that the self-action through the
environment is negligible, it follows from Eq. (4) that:

.h@_ 1
Mot 71 + ia

T+ y+Uy—-(E-dDF. (6)

A peculiarity of this equation is that all
perturbations having a collisional character are
considered with the help of only one parameter a. The
value of this parameter depends on the environmental
density. If we pass from Eq. (6) to the Neumann
equation for the statistical operator

p=10 @l 7
then, accurate to values of the higher order of smallness
with respect to o, we can write:

» .. .. . .
ih 57 = Ho, pl + [V, pl —ia AT, p} — i2axp. (8)
Here, as in Eq. (1), I:IO is the Hamiltonian of the
isolated subsystem. Besides, the operator of the kinetic

energy of the subsystem T and the operator of external

time-regular perturbation V are introduced in Eq. (8).
Square brackets denote the commutator, and braces
denote the anticommutator of the operators.

In Ref. 6 it was shown that reduction of the
Neumann equation of a complex system to the equation
of the separated subsystem by the Lax method? yields
the equation of the similar form:

0 PN A A A . .
ing; = Ulo, p1+ 10, p1 - iB T, p) = ivp. (9
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Equation (9) takes place, when the environment of the
subsystem under study can be considered as a heat
bath. Here B and y are constants. Angle brackets in
Eq. (9) denote averaging of the perturbation operator
over the states of the heat bath. Similarity of Eqs. (8)
and (9) indicates that the method proposed for
description of subsystem states in the heat bath with
the use of effective wave functions is rather valid.

A simple substitution shows that the wave
function meeting Eq. (4) is connected with the solution
of Eq. (6) as follows:

=0/ G0 . (10)

Equation (10) points to one of simple methods to
find some of possible solutions of nonlinear equation (4).
For this purpose, it is sufficient to solve Eq. (6) and
then re-normalize the wave function using Eq. (10).
This method is especially convenient in the case of
time-regular perturbation. However, since Eq. (4) is
nonlinear, its solution has some singularities, which do
not show themselves in the solution of Eq. (6). Let us
consider them.

In view of Eq. (10) and assuming the validity of
the superposition principle for wave functions, the
solution of Eq. (4) in the general case should have the
following form:

W)=Y C(th, (r), (11)

n
where C,(t) are some functions of time; w,(r) are

eigenfunctions of the stationary Schrodinger equation
following from Eq. (6):

E, \yn:ﬁ(T+x) W, + Uy, (12)
In Eq. (12) the separation constant E, can take
complex values.

Because of nonlinearity of the initial equations,
the coefficients C,(t) can be complex functions of time.
Their phase part carries the information about the
effect of external fields on the considered subsystem,
and it can turn out to be very important at solution of
some problems. However, within the framework of the
formulated problems, the coefficients ‘ C,(t) | are of our
particular interest. Just these parameters determine the
probability of finding a quantum system in some or
other state disturbed by collisions. To reveal the
regularities of the sought parameters, let us pass to
their squares for convenience

P(t) = |C (D] (13)

Since in the presence of the time-regular
perturbations there are no principal problems in solution

of the nonlinear Schrodinger equation in view of
Eq. (10), assume that the value of E(¢) is close to zero,
that is, we will analyze the behavior of an oscillator
under the effect of stochastic perturbation. It is
assumed that at fluctuations of the density of perturbing
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particles near the considered subsystem, the value of
the parameter a characterizing these perturbations may
change adiabatically.

Substitution of Eq. (11) into Eq. (4) gives the
following:

. ac iot * ~
Z ih 5: —EnCn —mcnzckclTkl X
kil

an(r):o, (14)

which should be fulfilled at any r. This is possible only
if the parenthesis is zero. Finally, after some simple
transformations, we have the system of equations:

P, __2

=—-X

ot h(t+a?)

x P, | =T, +ZPkfkk +Z\/Pkpz |fkl | cos(Br) | (15)
k

kl
1=k

(n=1,23, ...

In Eqs. (14) and (15) the matrix elements

T = ol T+ 1Ly (16)

are introduced.
The cosine argument in Eq. (15) is a phase of a

complex parameter C5(£) C/t) T:
Cr(OC; (DT +Cr (OCH(OTy,

= 17)
21C, M| C;® || Ty |

cos(B) =

Unlike the states of an isolated system (a = 0), for
which
oP,

—=0, (18)
ot

and within the framework of the condition
D b=t (19)
n

all P, are equiprobable. The situation is different for
the subsystem interacting with the environment. For
such a system more and less probable states exist. First,
let us find what P,(¢) are most probable. For this
purpose, equate the time derivatives in Eq. (15) to
zero. Finally, we have the nonlinear system of
equations:

Py =T, + Zpkfkk +Z\/Pkpl |Tt|cos(By ) |=0 20)
k kol
1#k

(n=1,2,3, ...
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It can be easily seen that this system of equations
allows only discrete solutions of the following form:

1
I%::{O. (21)

Only one constant can be equal to unity, while all other
constants are equal to zero, that is, the condition (19)
fulfills for the population of quantum levels. In other
words, the interaction of oscillators (molecules) leads to
the situation that the number of most probable
vibrational states becomes a countable set. Note that in
this case the most probable states of the perturbed
oscillator are wy-eigenfunctions of the Hamiltonian in
Eq. (12).

It follows from the obtained results that the
molecule most probably is in one of its vibrational
eigenstates. The question arises: whether these
equilibrium states are stable and what is their dynamics.
To answer this question, we can use the methods of
solution of nonlinear equations.8-10

As was already mentioned, vibrations of diatomic
gas molecules can be modeled with sufficient accuracy
by a one-dimensional oscillator. Consequently, to reveal
the stability of molecular vibrational states, one should
know eigenvalues and eigenfunctions of the Hamiltonian
of an oscillator subject to collisional perturbations.

In the one-dimensional approximation, the

corresponding stationary Schrodinger equation has the
form

62\1/ 2m . ~
1t +h_2(1 + l(l) En

2.2
e _MJW _0. ()

2

where m is the oscillator mass; o is the frequency of

vibrations. The constant En is

E,=E,—1/(1+iw). (23)

The standard method of solution of such equations
gives the following results:

(24)

E = —1 (n + lj ho
SN/ CEETY) 2
and

v (8) =4, exp (- /(T+ic) €2 /2)H, (5).  (25)

In Eq. (25) A, is the normalization constant; & is a
dimensionless variable:

E=xdmo /I ; (26)

H,(¢) are Hermitian polynomials of a complex
variable:

H,E&)=(-1)"xp (V1+ia§2]%exp(—v1+m§2} .(27)

As is seen from Egs. (23)-(27), although the
stationary states of the oscillator subject to collisional
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perturbations are close to the states of a harmonic
oscillator, but still differ from them. Coincidence is
observed at a = 0.

Due to nonlinearity of the initial equation, all
oscillator states turn out to be interrelated. Therefore,
when analyzing the dynamics of a populated level
(|c,(t)] =1), it is necessary to follow simultaneously
the behavior of all unpopulated states. For this purpose,
let us notice that near the equilibrium for the
unpopulated oscillator quantum states (P;=0) the

constant C,(¢) meets the equation
6Cl i+a i
Tl Y G -Ltu, o+
5 (1+a2)h(” 2 Ci 2 Un €

o 2
+m(Tll +0[Cl|° G, (28)
where Ty and Uy are matrix elements of the kinetic
and potential energy operators.

In the form, this equation coincides with the well-
known equation describing a single-parameter family of
vector fields on a plane:

dz . -
== +e+kzz), 29)
. 2(io+e+kzz)

the peculiarities of whose solution are thoroughly
studied.8:1! In Eq. (29) z is a complex coordinate; o
and k are real nonzero constants; € is a real parameter.
In the considered case

1 Uy
—Cpp o= (1 ) -2,
z2=Cp; o (1+a2)h(” 0=
o
e=—k= —m(Tzl +1). (30)

At any ¢ the point z=0 in Eq. (29) is the
equilibrium position of the focus type, and the focus is
stable at € < 0. Consequently, if the environmental
density is high (o is far from zero), then even in the
presence of weak time-regular perturbations (E(¢) # 0),
the oscillator cannot transit to any unpopulated level.
In this case, in the absence of strong time-regular
perturbations, it is in some eigenstate for infinitely long
time, that is, the found equilibrium states are stable.
Recall a common postulation that a quantum system is
in one of the states being a solution of the stationary

Schrodinger equation. This condition automatically
appears when taking the interaction into account.
According to the obtained equations, for an oscillator
to transit from one equilibrium state to another, either
a marked time-regular perturbation or a vanishing
parameter o is needed (as known, at k > 0, if € = 0, the
focuses z =0 loss their stability). This circumstance
allows us to study the regularities of transition from
one equilibrium state to another.

In the considered case, the following is valid for
the parameter ¢

=———% (T . 31
= rabn m @y
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In Refs. 8, 11, and 12 it was shown that since
Eq. (29) has a fold-type singularity, as & approaches
zero from the negative side at some small but nonzero
value |e| =8, the existing perturbations can disturb
the system equilibrium. In this case, the system transits
to another remote equilibrium state or some limiting
cycle or another more complex attracting set. A
“catastrophe” occurs. This circumstance seems to be
important. For an oscillator it means that at a less than

some critical value, at which the Schrodinger equation
is still nonlinear, stepwise changes in the population of
quantum level are possible.

Such a stepwise disturbance of the equilibrium
state of an unpopulated energy level is possible only
under the condition |e| <. Taking into account
Eq. (31) and the fact that the diagonal matrix elements
of the kinetic energy operator are real

~ 1 1
Tkk :E(k+§)hm+x (32)

(Eq. (32) is valid accurate to the square parameter o),
we can conclude that this behavior is possible for the
unpopulated mth level, if o meets the inequality

a<a, :ZhB/Km+%jhm+2x] (33)

Consequently, the probability of change of the
state C; = 0 is proportional to the probability that o is
in the interval from zero to a,, due to fluctuations of
the environmental density:

Ay

F(am): J.f(a)doc ’ (34)
0

where f(a) is the probability density of realization of
this value of a.

To find the explicit form of F(a,), one should
know the dependence f(a). However, within the
framework of the considered problem, this is not an
obligatory condition because of the smallness of a,.
Actually, because of the smallness of a, and the
condition f(0) =0 (recall that the starting point was
the assumption on impossibility of existence of isolated
quantum subsystems), for F(a) we can write
approximately:

F(a,,) = Ca,, + O(a?), (35)

where C is some constant.

Then, according to Eq. (33), the probability of
excitation of the unpopulated Ith oscillator level is
inversely proportional to the energy of this state.
However, such excitation not always can lead finally to
re-distribution of the population of oscillator levels, in
particular, if transition to another attractive set takes
place. Let us determine in what cases this is possible.
The corresponding estimate can be obtained in the two-
level approximation.
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Let us separate two “stationary” states of the
quantum system: ,(r, t) and ,,(r, t), one of which is
populated. Assume for certainty that the system
initially is in the equilibrium state: P,g =1, P,y = 0.
All other Ppy are assumed identically equal to zero.
Then the system of equations (15) takes the form

OP, 20 = 7 T
n :—2Pn (=T + PyTyy + Py Ty +

ot h(l+a?)

+2{P, P, | fnm |C0S (Bnm)]: F(Pn’Pm)’
(36)

oP, 20 7 i T
_m:—zpm (=T + PuTon + P Ty +

ot n(l+a?)

+2{P,P, |fnm |COS (Bnm)]:q)(Pn!Pm)'

According to the general properties of nonlinear
systems on a plane,!0 the stability of a stationary point
depends on the behavior of the right-hand side of the
system of equations (36).

One of the necessary conditions for absence of
other neighboring equilibrium points is a nonzero
Jackobian:

_ FI”,, (PnO’PMO) Flsm (Pnovpnzo) #0 (37)
q')’Pn (PnO’Pmo) q'),Pm (PnO’PmO) ‘
One more parameter determining whether this
equilibrium state is stable or not is

o= FI",, (PnO?PmO )+ CD'P,” (PnO?PmO). (38)

Depending on the values of A and o, the
equilibrium states of the considered two-level subsystem
are nodes, focuses, or saddles.

If A>0 and o # 0, then it is a node. At A > 0 and
o =0 the equilibrium state is a focus. At A <0 it is a
saddle.

For the perturbed oscillator, the values of A and o
near the equilibrium points depend on the values of

diagonal matrix elements T’,m, T‘mm and o. Taking into
account Eq. (32), accurate to the second order of
smallness with respect to a, we can write:

A =(ao)? (n+%+%) (n-m), (39)
0:&@(2n—m+1+2—xj. (40)
2 ho

The obtained equations allow studying the dynamics of
variation of the equilibrium state.

First, consider the case that the quantum number
n corresponds to the upper layer. In this case A and o
exceed zero. Such an equilibrium point turns out to be
unstable. 10 If the oscillator is disturbed from this point
so that its final state is a superposition of the initial
wavefunctions, then, according to Eq. (12), the
following equation is valid for this superposition:
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y(x,t)=

| Coexp =iy () Cypexp (=122 ()| /
/{| C, | exp ( 1w] +

n

(Em — E;;z )t:| +

n

+|C,y |* exp {1

1
+2Re {CnC;2 exp [ 1@] Wl Wm )} }2. 41)

It follows from Eq. (41) that with time, because
of the exponentially decreasing factors, the
wavefunction of a two-level subsystem tends to the
lower-state wavefunction keeping normalization in
time. In other words, the oscillator relaxes to the lower
energy state.

This means that in the case that there arise
conditions for a catastrophe, the equilibrium state of
the oscillator being at the higher energy level is to
change stepwise. No closed trajectories are formed. It is
natural to interpret such a change in the oscillator
equilibrium state as a quantum jump.

Consider the next variant: n < m. The equilibrium
point in this case is a saddle. This point is also unstable.
This means that the population P, of the lower level,
as well as at n > m, can change stepwise. However, this
case has a significant difference. Such changes are not
always possible. Actually, if the oscillator is disturbed
from the equilibrium state so that its new state is
described by the superposition (41), then with time the
oscillator comes back to the initial state. In other
words, a loop passing through the equilibrium point is
possible here. The stability of this point depends on the
sign of ¢ (Ref. 10). The loop is stable if this parameter
is negative at the equilibrium point and unstable if it is
positive. Consequently, the stepwise change of the
oscillator equilibrium position is possible only at ¢ > 0.
Otherwise, even if prerequisites for a quantum jump
exist, the oscillator returns to the initial state after
disturbance. This means that the upper state remains
unpopulated. It follows from Eq. (40) that the oscillator
cannot change the equilibrium state stepwise at

m>2n+2—x+l. (42)

This inequality (42) depends not only on quantum
numbers, but also on yx. In spite of the fact that
mechanistic identification of realization of an alternative
trajectory and Brownian motion of an actual particle is
likely conditional, we would like to note some
important circumstance here. At ordinary Brownian
motion of a particle in a heat bath, this parameter is
equal to the energy per one degree of freedom3:

%= kT /2 (43)
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(kg is the Boltzmann constant; T is the temperature).
If % has just this physical meaning, then we can assert
that quantum jumps from the lower level to the upper
one are possible only at a certain temperature:

kT > ho (m-s—%)—Zh(n (n+%) (44)

It follows from Eq. (44) that at
T < ho/(2kp) (45)

stepwise transitions from the ground level (n =0) to
upper levels are impossible. In other words, at the
temperature below the limit determined by Eq. (45), the
oscillator, finding itself in the lower equilibrium state,
cannot leave it without strong external disturbance.
Consequently, if we consider an ensemble of oscillators,
then only the lower energy state is populated in them at
the temperature below some critical limit. At the
temperature below the value determined by Eq. (45),
vibrational degrees of freedom are “frozen.” Note that
at the temperature above the critical limit, the
distribution of the population probability of energy
levels is close to Boltzmann distribution (the materials
of the corresponding investigation are sent for
publication) and, consequently, emission of a molecular
ensemble is to obey the Plank formula.

“Freezing” of vibrational degrees of freedom must
apparently lead to a change in the character of emission.
As the temperature drops down below the limit
determined by Eq. (45), both spontaneous and stimulated
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emissions from a molecular ensemble are to be absent.
The disappearance of emission is caused by the nonlinear
character of molecular interaction. The same effect
seemingly shows itself in heat capacity of gases.
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