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Components of the tensor of turbulent diffusion coefficients in the atmospheric surface layer were
determined experimentally during a four-day observational period. Besides a pronounced diurnal, almost
periodic, variation of these components, considerable fluctuations were found that couldn’t be explained
by measurement errors. An attempt is undertaken to explain such a behavior of the tensor of turbulent
diffusion coefficients by the fractal structure of the process observed.

Mathematical modeling of diffusion of aerosol and
gas pollutants in the atmosphere is widely used for
solution of wvarious applied problems. Within the
framework of Eulerian approach to description of
turbulent diffusion, use of the following semi-empirical
equation® seems to be most fruitful method:
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where C and U; are the mathematical expectations of
the pollutant concentration and wind velocity
components; K;; are the components of the tensor of
turbulent diffusion coefficients; @ is the term
describing the pollution source; x=2x; and y =1y
correspond to the horizontal coordinates, and z = x3 is
the vertical coordinate; ¢ is time. The over bar denotes
averaging over a statistical ensemble. Repeated subscripts
denote summation.

One of the main problems arising when solving
this equation is correct determination of the tensor of
turbulent diffusion coefficients. In Ref. 3 a recursion
method of closure of the semi-empirical equation was
proposed. In its first approximation, this method allows
obtaining analytical equations for determination of Kj;
depending on the series of instantaneous values of wind
velocity components:
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where Uj is the instantaneous value of fluctuations of
the ith wind velocity component; 1 is the characteristic
time scale of fluctuations of the wind velocity
components (Eulerian time scale); T is the period of
averaging the instantaneous values of the wind velocity
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components and calculation of the mean values U; and

pulsations U;. Equation (2) enables one to objectively
determine  turbulent diffusion coefficients from
experimentally obtained series of instantaneous values
of the wind velocity components.

References 1 and 2 described the results of
application of this method to determination of the
tensor components K;; in the atmospheric surface layer.
To obtain the series of instantaneous values of the wind
velocity components, we wused a three-coordinate
acoustic anemometer.!-2 The results measured in the
atmospheric surface layer allowed us to confirm, for the
first time, the hypothesis on the proportionality of Kj;
to the corresponding components of the Reynolds
viscous stress tensor. Earlier this hypothesis was justified
only for turbulent boundary layers modeled in wind
tunnels.” Figure 1 exemplifies the time dependence of
K, for the experiment conducted during four days on
the water-land interface near Zavyalovo village situated
on the bank of the River Ob. The measurements were
conducted at the height of 1.5 m above the surface.

The plot is drawn based on 576 readouts obtained
for T =10 min. The frequency of measurement of
instantaneous values of the wind velocity within each 10-
minute sample was 0.5 Hz. The characteristic time scale
Tt was determined by estimating the time of the first
zero of the autocorrelation function of fluctuations of
the horizontal wind velocity component. This procedure
was justified in Ref. 3. In the example considered we
found that 1~ 40-50s. The values of K,, given
correspond to the system of coordinates, in which the
horizontal axis x is directed along the vector of the
mean wind velocity. Besides the pronounced, almost
periodic, diurnal variation of K,,, one can see
significant fluctuations of the instantaneous values of
the x-component of the tensor. Data analysis showed
that these fluctuations couldn’t be explained by the
presence of measurement errors, which make up no
more than 15-20%.
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Fig. 1. Time dependence of K.

We have undertaken an attempt to explain such a
behavior of the tensor of turbulent diffusion coefficients
by the fractal structure of the process observed.® The
limits of one paper do not allow us to describe, even
briefly, the main ideas of the modern theory of dynamic
chaos. Therefore, let us define only those characteristics,
which are considered in this paper.

In the general case, the behavior of K,, should be
considered as a single realization of some statistical
ensemble. We do not know what number of hidden
parameters (generalized coordinates) determine all terms
of the statistical ensemble of K,,, that is, the dimension
of the phase space is unknown. However, the ensemble
of realizations of K;; can supposedly be presented by a
continuous set of points distributed in the phase space.
The density of the distribution of phase points is
subject to random fluctuations. Statistical characteristics
of this process determine the degree of dynamic chaos
in the system.

In Ref. 12 a new concept of dynamic chaos was
introduced for the first time, namely, a strange attractor.
This name points to two its unusual properties: fractional
(fractal) dimension of the phase space of the dynamic
system and the property to be an attracting area for
trajectories from neighboring areas of the phase space.
The trajectories inside the strange attractor are
dynamically unstable, and this manifests itself in the
exponential divergence of the initially close trajectories.
The dimension of the strange attractor is a very important
characteristic of fractal objects. In the general case, the
fractal dimension determines the bulk of information
needed to specify the coordinates of a point belonging to
the attractor.

Below we consider the correlation dimension of the
attractor D (Ref. 10):

M(E)
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where M(E) is the minimum number of n-dimensional

cubes with the edge E needed to cover the attractor; p%
is the probability that a couple of attractor points belong
to the ith cube. It was shown? that D can be considered
as a characteristic of the density of points in the statistical
ensemble of phase trajectories in the phase space.

Another one important characteristic of the
attractor is the entropy (this concept was introduced by
Kolmogorov 4). Below we use the correlation entropy.
To construct it, we divide the phase space including the
attractor into M(E) non-overlapping n-dimensional
cubes with the edge E. Conduct then m successive
measurements, tracking the phase trajectory and
marking, with the interval A, the cubes s;, the trajectory
has passed through. In every independent experiment,
we obtain some realization in the form of a series of
cubes s1,...,5,,. If we know the probabilities P(sy,...,s,,)
of all possible series of cubes, then the correlation
entropy K is determined in the following way:

K =-1im lim lim |: L In Y PXsy, ..., sm):| .(4)
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The characteristic term, for which the system
behavior can be predicted, is inversely proportional to
the entropy of the process. If the entropy achieves zero,
then the system becomes completely predictable. For
truly random processes, the entropy is infinitely large. In



470  Atmos. Oceanic Opt. /May—June 2002,/ Vol. 15, Nos. 5-6

the presence of the strange attractor, the entropy is
positive and has a finite value. Thus, the entropy value
is a quantitative characteristic of the degree of system
randomness.

It does not follow from the above definitions that
the available time series of K;; are necessary and sufficient
to determine the attractor characteristics. However, in
Ref. 13 it was shown that a new attractor can be
constructed from one realization of a dynamic variable for
almost all smooth dynamic systems, and the properties
of this attractor are the same as in the initial one. The
numerical algorithm constructed based on the results of
these references was implemented by Sychev in the form
of the FRACTAN 3.0 computer program. The program
manipulates with time series from 512 to 16384 readouts
and analyzes the phase space with the dimension from 1
to 16. We are thankful to the author of this program for
the possibility to use it for analysis of experimental data.

The algorithm for calculation of the correlation
dimension of the attractor for the n-dimensional space
was constructed based on the following principles.!!
We consider the equation showing the relative number
of couples of attractor points separated by the distance
no longer than 7:

2 m—2 m—1
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where ©(¢) = {(1): é’i%,
between the points x; and x; in the n-dimensional phase
space; m is the number of points x; on the attractor. If
C(r) =~ vD, then D estimates the correlation dimension
of the attractor. At the unknown dimension of the phase
space, calculations are made taking, successively, the
values n =1, 2, 3, ... . The correlation dimension of the
attractor in this case first increases as a function of the
parameter 7. Then the large number of curves reach,
usually, some roughly constant level, which is then
taken as the sought value of D. The estimated dimension
of the phase system in this case is n < 2D + 1.

p(xj, x7) is the distance
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Fig. 2. Correlation dimension of the series of K, values.
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Figure 2 shows an example of calculated dimension
D of the series of K,, values for the experiments
conducted on July 21-24 of 1999. Different curves
correspond to the phase space dimensions from 1 to 12.
The results depicted in Fig. 2 show that roughly the
same level of the curves is observed at the correlation
dimension of the strange attractor D ~ 1.5. This
corresponds to the estimated dimension of the phase
space of the considered dynamic system n ~ 4.

The correlation entropy of the attractor K is
determined in a similar way.10 In this case, Eq. (5) is
calculated depending on n and it is assumed that
C(r, n) = rPexp(— nK). As a result, it follows that

C(r, n)

Kzlnc(r,n+1).

(6)

Figure 3 depicts an example of calculation of the
correlation entropy K of the series of K, values for the
experiment dated to July 21-24 of 1999. The curves
correspond to the considered dimensions of the phase
space from 1 to 12.
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Fig. 3. Correlation entropy for the series of K,, values.

It can be seen from Fig. 3 that K ~ 0.3. This
suggests the presence of a strange attractor in the
system considered, but with the low degree of chaos.
The Table below generalizes the estimated dimensions
of the phase space, correlation dimension of the strange
attractor, and its correlation entropy for K,,, Ky, and
K,, in the experiment dated to July 21-24 of 1999.

Component n ‘ D | K
Ky 4 1.5 0.3
Kyy 4.6 1.8 0.3
K, 3 1 0.2

The results obtained allow us to state that the
components of the tensor of turbulent diffusion in the
atmospheric surface layer probably have the fractal
structure. In particular:

e the dimensions of phase spaces of these
components vary from 3 to 4.6;

e the correlation dimensions of strange attractors
vary from 1 to 1.5;

e the correlation entropy of strange attractors is
about 0.2-0.3, that is, the degree of chaos found in the
strange attractors is low.

Thus, it seems rather justified to continue studying
the fractal structure of the components of the tensor of
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turbulent diffusion coefficients in the atmospheric surface
layer, as well as trying to make clear its physical nature.
For example, using the data tabulated, we can assume
that n =5 can be accepted as a very first hypothesis about
the dimension of the phase space. Factor analysis of
experimental data can be applied as a method for search
of hidden parameters.
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