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Method and some results of numerical simulation
of the intensity fluctuations of a plane light wave behind
a phase screen in a multipath region. Part 1. Average intensity
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The spatial structure of average radiation intensity behind a phase screen including one-
dimensional regular and two-dimensional random inhomogeneities is studied. The conditions are
formulated, under which the intensity distribution averaged over an ensemble and over a receiver’s
aperture coincide, as well as the conditions, under which the radiative transfer equation is applicable to
calculation of the average intensity distribution. Ill-posedness of the inverse problem is discussed.
Restoration of a regular phase distribution on a screen from measurements of the average light intensity

in a multipath region is shown to be impossible.
Introduction

The applicability of methods for numerical
simulation of light propagation described by quasi-optics
equations is restricted because of obvious conditions: a
step of the computational grid should be smaller than
the minimum spatial scale of light field variation and
the size of a computational aperture should be larger
than the size of a light beam. These conditions should
be fulfilled both in difference and direct schemes of
solution employing, for example, the method of phase
screens and the method of discrete fast Fourier transform.
These methods are successfully wused to study
transformation of laser beams in turbulent and nonlinear
media. 173

However, some problems could not be solved by
standard methods used for calculation of wave field
transformation because of the above conditions. One of
such problems is modeling of stellar scintillations at
observation through the Earth’s atmosphere from an
orbiting platform. Unique data of such observations,
their interpretation, and detailed bibliography can be
found in Refs. 4 and 5.

This problem is characterized by a wide range of
spatial scales of atmospheric inhomogeneities that form
the scintillation pattern (from about 1 ¢m to 10 km in
the plane normal to the ray) and even wider range of
the scale of variability of light field intensity and
phase. If the maximum scales in this case are the same
as the scales of refractive index inhomogeneities, that
is, about 10 km, then the minimum ones determined by
interference of the scattered fields in the multipath
region may be about fractions of a millimeter. Thus, the
range of spatial scales of the light field is eight to nine
orders of magnitude, and this fact complicates
considerably implementation of algorithms for field
calculation.
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In observations it is almost impossible to reveal
the information on the spatial structure of light field
with the scale less than the size of the receiving aperture,
therefore it is excessive. (It should be noted that the
size of an aperture for receiving radiation from an
individual star cannot be smaller than several
centimeters). The aim of this paper is the development
of a method to directly simulate the intensity
distribution of the light field averaged over a finite-size
aperture omitting the stage of calculation of the field
itself. This work consists of two parts. In the first one,
simple equations are derived for calculation of average
scintillations and the conditions of their applicability
are formulated. Based on these equations, the
relationship between the distribution of the mean
refraction angle on the phase screen and the distribution
of the average intensity of the light field — one of the
main characteristics of scintillations — is studied. The
second part presents the results of numerical simulation
of scintillations caused by stratified atmospheric
inhomogeneities, which can be modeled by a phase screen.

Statement of the problem

Assume that a phase screen is at the plane x =0
and the phase distribution ¢(z, y) is specified on it in
the following form:

0o(z, y) = k[Sp(2) + S1(z, Y],

where & is the wave number; Sy(2) is the regular eikonal
component depending only on one coordinate z;
S1(z, y) is the random component being a function of
two coordinates. Division into the regular and random
coordinates can be made somewhat arbitrarily. In
particular, the regular part can include the phase
incursion  component  introduced by  stratified
inhomogeneities of a rather large scale, while the
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random one can include the small-scale part of
stratified inhomogeneities and a part of the phase
incursion introduced by locally isotropic turbulence.
The specific restrictions on the scales are formulated
below. Assume also that the ensemble-average
characteristic ~ <S;(z, y)> =0, and the regular
component Sy(z) = <S(z, y)>. The angular brackets
denote here averaging over the ensemble of realizations.

As for the fluctuation part, we believe that it is a
locally homogeneous function of coordinates z and y
obeying normal distribution and having the structure
function

D(zy, 2, y1, y2) = <[S1(z1, y1) = Si(zg, y)1?> =
= C(z1 + z9) D(zy — 29, y1 — y2). D)

The diffraction field is measured in the plane
separated by L from the phase screen. In the paraxial
approximation, its intensity is specified by the following
equation:

p N2
1(27y)=(m) J-eXP{i[<P(21:%)—(P(szyz)]}x

xexp{%[(z_ﬁﬁ _(2_22)2 'z(y_y1)2 _(y_yz)z ﬂx

Xd21d22dy1dy2. (2)
Hereinafter, the intensity of the incident wave is

assumed equal to unity, and the integration limits,
unless otherwise specified, are assumed to be (—o0, +o0).

Mean intensity at a point receiver

Averaging of Eq. (2) over the ensemble of
realizations with the allowance for Eq. (1) gives

k
<I(z)>_m><

x J-exp[ik[‘l’o &) +¥‘c’_,] —%k2C(n)D(‘c},0)}dnd‘é_,, 3)
where

Woln, &) = So(n +£,/2) = So(n — £/2).

Define the coherence length r.(n) at the phase
screen as the distance, at which k2C(n)D[r.(n)] = 2.
Assume that the structure function D is a power-law
function. Then C(n)D(£) can be written as
CD(E) = 2lg/r.(mP. The vicinity about the point
£ = 0 of the radius 7.(n) is significant for integration of
Eq. (3) over the coordinate &. If the size of regular
inhomogeneities H is much larger than the coherence
length, then the function Wy(n, &), near the point
& =0, can be expanded in a power series:

Pon, &) = [y(WE + B(n) € + ...], (4)
where
dSy(n) ,
y(n) = gnn =So(m)
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is the distribution of the refraction angle on the phase
screen;

dss
B() = ﬁ—dff;‘) TR (5)

If the size of inhomogeneities is rather large, then
in calculating the mean intensity we can restrict our
consideration to the first term in the series expansion (4).
Through numerical integration it was found that for the
power structure function with the exponent g =5/3 it
is sufficient if

R.(m) = I(1), (6)
where

R.(n) = L/kr.(n); 1z(n) = 3L[|B(W)|/k2]1/3.

The parameter R. is the scale of the point spread
function® (the radius of the effective area in the
observation plane, over which the point beam is spread
because of the diffraction and random jitter). The
parameter [, is the characteristic spatial size of the
near-caustic zone in the absence of random
inhomogeneities. If the condition (6) is fulfilled, the
integral (3) can be presented in the form

<I(2)>= J.G[p(z,n),n]dn, @

where
p(z,m) =n+ Ly(n) — z

Glp(z,m) =

_t exp[—lkZC(n)D(ét)+ip(z,n)t}dt ®)
21 2 k

is the Fourier spectrum of the coherence function of
light field (point spread function). The function
Glp(z,m),n] is normalized according to the following

rule IG(p,n)dp:L With the power structure
function,

G[P(z,n),RC(n)]=ﬁg[gi$,ﬁ}, )

where
g(q,B)zﬁ Iexp[—ItIB + iqt]dt )

It should be noted that the solution (7) with the
function G(p,mn) set by Eq. (8) is the solution of small-
scale approximation of the radiative transfer equation
in the medium with regular inhomogeneities,” if this
solution is sought for in the phase screen
approximation.

The functions g(g, B) can be easily found through
numerical integration, tabulated or represented in some
other, convenient for integration, form. In particular,
at B=5/3, which corresponds to the exponent of
Kolmogorov turbulence, the function g¢g(g) can be
approximated as
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9() = g1 (g < q1) + g2 (g1 < g < q) +
+ g3(q)(q > q2), (10)

where

3 3
g1(q) = 5T (g) exp[—(0.52¢)?],

a1 3 7 8/3
92(q) = g1(qy) (;) o 93(@) = g2(q2) (;) :
G1 =3, gy = 22.

The relative error of this approximation in the interval
0 < g <100 does not exceed 2%.

Thus, calculation of the mean intensity
distribution is reduced to calculation of the single
integral (7). The areas significant for integration in this
case are those with the radius of about R, near the
points, at which p(z, ) = 0. Let n,(2), n =1, 2, ... be
these points. They are the points of stationarity of the
regular phase on the screen, the points from which rays
come to the observation point with the coordinate z. If
the distances between neighboring stationary points
exceed R, and the point z is not singular, that is,
1+ Ly'[n,(2)] # 0 at any n, we have, from Eq. (7), an
approximate equation for the average intensity

1

<@ = L LG

1)

The distribution <I(z)> under these conditions is
independent of R. and, consequently, on the coherence
length. If there is only one stationary point, then

1
1+ Ly'[n(2)] -

In this case, the height distribution of the mean
intensity is the same as the regular intensity
distribution in the absence of random inhomogeneities.

In the multipath case, the mean intensity (11) is a
sum of intensities of the fields formed by the stationary
points on the screen. Its distribution over z naturally
differs from the distribution formed in the absence of
random inhomogeneities and being a complex
interference pattern of the fields coming at the
observation point from the vicinity of stationary points.
If the condition (6) is fulfilled, turbulence washes out
the interference pattern and the complex structure of
the near-caustic zones.

(12)

<I(z)> =

Mean intensity on finite-size aperture

The spatial scales of the average intensity
distribution formed in the observation plane by large-
scale regular inhomogeneities are bounded below by R,
which can vary from several centimeters at the heights
of perigees of light rays (minimum distance to the
Earth’s surface about 40 km) to tens of meters at the
heights of about 10 km. These values are comparable
with the size of effective receiving apertures in actual
measurements of scintillations. In measurements, the
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size of the effective aperture is one of the following
parameters:

Ry, — the radius of the receiving objective, whose
standard value is 5-10 cm;

R, is the distance, at which the receiver moves for
time of the signal accumulation. This distance is several
tens centimeters in measurements with the measurement
rate of about 10 kHz (Refs. 4 and 5) and hundreds of
meters in spectroscopic measurements (Ref. 8);

Ry is the dispersion shift of rays at extreme
wavelengths of the receiver spectral band, which can
reach tens of meters at the height of about 15—10 km in
the visible region at the bandwidth of 10 nm (Refs. 4
and 5).

Let the receiver has a rectangular aperture with
the halfwidths R, along the vertical axis and R, along
the horizontal axis. These may be functions of the
coordinate z. The double averaged (over the aperture
and over realizations) intensity can be determined as

<Is(z, R;, Ry> =

1 R, Ry
= IR.R, <71'!: Il.yl(2+z,y+y)d2dy>. 13)

Taking into account the definition (2), after
integration of Eq. (13) over the coordinates z' and y',
for the mean intensity distribution on the aperture we
obtain the equations:

<IsGR)>= [GslpG Ronlin, (1)
where
GS[P(Zyﬂ),Rz,n]=ix
2n
}sin(th)
Rt

z

x J-exp[—%kZC(n)D(%t)+ip(2,n)t] de.  (15)

The integrand expression in Eq. (15) differs from
Eq. (7) by the presence of the aperture factor
sin(R,t) /R,t. Thus the function Gg is the Fourier
spectrum of the product of the coherence function of
light field behind the screen by the aperture function.
If the effective receiving aperture R, is much larger
than the scale R, then the function

GS[p(Z: n)v sz ﬂ] = GS[p(Zv ﬂ), Rz] =

1 [ (z, ))1

~5ic0 - (P50 | (16)
where 0(x) is the unit stepwise function: 8(x) = 0 at
x <0, and 6(x) =1 at x > 0.

As was found through numerical integration with
the allowance made for the cubic term of the series
expansion of ¥, function, the condition R, > 16, is
sufficient for applicability of Eq. (16). In this case, the
difference between the calculated function and the
stepwise function (16) does not exceed 5%. From a
comparison of this condition with the condition (6), it
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can be seen that at the same parameters of regular
inhomogeneities the approximation (8) is fulfilled at
far smaller values of the averaging aperture, than the
approximation (16).

Beyond the vicinities of singular points of radius R,
the intensity at the final aperture is determined by the
same equation (11), as the point intensity averaged over
realizations. In this case, it is independent of the size of
the averaging aperture and the averaging method. The
differences in the averaging methods manifest themselves
in the intensity distribution near singular points.

Through numerical integration of Egs. (7) and
(14) it is easy to find the intensity distribution in the
vicinities of singular points at the known distribution
of the mean phase on the screen.

Let us consider, as a case study, the model of the
phase screen as an exponential distribution with
superimposed Gauss perturbation. In this case the height
distribution of the refraction angle was specified as

_dSp _
Y(Z)—d—z—

H
:yo{eXp[—(Z/HO)]+2mH—(1)Hi16Xp[—(z/H1)2]}. 7

Parameters of the model (17) were chosen in the
way to model light propagation in the atmosphere
through the tropopause zone. They were assumed to be
the following: yo = 0.008 rad, Hy =7 km, H{ =1 km,
m=0.1. The singular points in the observation plane were
zq = —23.482 km and zp = —8.646 km. The distance L to
the observation plane was taken 2000 km. The
coordinates of the stationary points on the screen for
this model were n(z;) =-0.62 km and n(zy) = —0.63 km.
The wave intensity at the points in the interval
21 < z < z9 is determined by three stationary points.

1 r<I>
0.8

0.6

0.4+

0.2 N

0 1 1 1 1

-30 -15 0 15 z, km
Fig. 1. The mean intensity as a function of the observation
height z for the model (17) as calculated by Eq. (11).

Figure 1 shows the distributions of the mean
intensity in the observation plane as calculated by the
asymptotic equation (11), and Fig. 2 shows the mean
intensity distributions near the point z; as calculated by
Egs. (7) and (10) at two values of the coherence length
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7. =0.05m (R, =4 m) and r, = 0.005 m (R, =40 m),
as well as the distributions calculated by Egs. (14) and
(16) at the aperture halfwidth R, equal to R..

The effect of diffraction on random inhomogeneities
can be seen from Figs. 1 and 2, and averaging over the
receiver aperture leads to limitation of the level of the
mean intensity in the caustic zone. The larger the
aperture, the larger this limit. One can see the
difference in the mean intensity distributions obtained
with the two methods of averaging considered.

| <I>
<Ig>

w

-5 -2 1 4

7
(z-2z0) /R
Fig. 2. Mean intensity near the singular point z¢: asymptotic
by Eq. (11) (dashed line) and the mean over realizations
(solid line) at R.=4 (f) and 40 m (2), mean over the
aperture with R, = R, (dots).

On ill-posedness of the problem on
restoration of the mean phase from the
mean intensity distribution

In the single-path case, Eq. (12) relating the mean
intensity distribution to the regular distribution of the
derivative of the refraction angle has an unambiguous
solution:

Ly(m) =z(m) - m, n2)=z + J.<I(2)>dz, (18)

where zg is the initial height that is rather large so that
the refraction is insignificant.

If several rays take part in the formation of the
intensity distribution, then the problem of restoration
of the refraction angle or its derivative from the measured
average intensity distribution is ill-posed. Even the
number of regular rays taking part in the formation of
the average intensity cannot be determined from the
mean intensity distribution.

It can be assumed that some information about the
regular phase distribution on the screen can be obtained,
if restoration is conducted by the single-path
equation (18). Figure 3 shows an example of restoration
of y(n) by this equation from the mean distribution
shown in Fig. 1.
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4r v10°

-4 2 0 2 m, km
Fig. 3.

The restored distribution is shown by solid curve,
the initial distribution Ly(n) is shown by the short-dash
curve, and the unperturbed exponential distribution is
shown by the long-dash curve.

From a comparison of the curves, we can see that
there is no correspondence between the initial and
restored distributions in the multipath region. Even the
qualitative behavior of the curves is different. For
example, the sign of wvariations of the restored
distribution about the unperturbed (exponential) one is
opposite to the sign of specified variations. The amplitude
of variations of the reconstructed refraction angle in this
example is ten times smaller than the actual one. Thus,
the assumption on the possibility of reconstructing the
mean perturbation characteristics from the single-path
equation proves to be wrong. The interference structure
is lost in averaging, but it is mostly just this structure
that bears information on multipathing.

Conclusions

The equations have been derived that relate the
mean light intensity distribution over a finite aperture
to the distribution of the regular refraction angle on the
phase screen in the regular multipath region. They
correspond to description of wave propagation in the
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approximation of the radiative transfer equation and are
applicable under condition that the size of the effective
averaging aperture in the observation plane is larger
than the characteristic scale of intensity variations near
caustics of the regular ray pattern. Beyond the vicinity
of singular points, the average intensity is independent
of the size of the averaging aperture. In this case it is a
sum of intensities of light from the vicinity of stationary
points on the phase screen and is calculated by simple
asymptotic equations. Near singular points, the average
intensity distribution depends on the averaging method
and on the aperture size. It has been shown that the
problem of restoring the mean refraction angle on the
screen from the mean intensity distribution measured in
the regular multipath region is an ill-posed problem.
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