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Differential and statistical invariants of a wavy surface.
Part 1. General properties of invariants
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The transformation and symmetry properties of surface derivatives, correlation functions, and
spectral moments at rotation of coordinate axes are examined. The spectral moments and derivatives of
the same order are shown to be transformed in the same manner and can be represented in terms of their
rotational invariants. Recurrence relations are found for invariants of different orders. The properties of
isotropic, homogeneous, and inhomogeneous surfaces are discussed.

Introduction

When solving problems of oceanology and ocean
physics associated with variability of sea roughness
under the effect of various factors, adequate theoretical
description of a wavy surface as a main object of the
study becomes of primary importance. This description
involves such basic issues as symmetry and invariance
of differential and statistical characteristics of the sea
roughness that call for consideration in more detail in
connection with development of remote sensing
methods.

As regards the differential characteristics of
roughness (derivatives of surface disturbances), the
differential geometry considers only the first and second
quadratic forms of the surface,! that is, the properties
of no higher than the second derivatives. As for the
statistical characteristics, the overwhelming number of
investigations made by now are limited to the study of
wave height and slope statistics, that is, no higher than
the second spectral moments. The well-known
theoretical analysis of these characteristics is considered
in the Longuet-Higgins paper.2

At the same time, in that paper and in some others
(see, for example, Refs.3 and 4) statistical
distributions connected with radiation reflection from
the surface are obtained, that may include derivatives
up to the third order and form the basis for remote
methods of sea roughness diagnostics. Using the remote
optical methods, it is possible to study spectral
moments up to the sixth order, and solve a wide range
of scientific and applied problems. In this connection,
analysis of invariant properties of higher (higher than
the second) surface derivatives and spectral moments is
rather urgent. Invariants of surface fields, that is,
functions of these fields independent of the azimuth
angle, are of particular interest in sea investigations.
On the one hand, measurement of invariants is a
convenient method for studying external factors and
processes disturbing the sea surface. On the other hand,
what is no less important, they allow the angular
dependence (anisotropy) of roughness characteristics to
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be revealed in the explicit form. It should be noted that
invariant properties of the surface are inseparably
linked with its symmetry, and in this case we can speak
about the properties of internal (point or local) and
external (structural) symmetry, as it is conventional,
for example, in crystal physics.®

In other words, if in the first case we consider the
invariance ~ with  respect to  point  symmetry
transformations (rotation, reflection, and inversion),
then in the second case we take into account extra
requirements connected with a choice of a particular
physical model of the surface (isotropy, homogeneity,
etc.). As a rule, the requirements of external symmetry
lead to degeneration of invariants, at which some of
them wvanish. This simplifies the structure of fields
(decreases the number of independent components) and
simultaneously imposes certain restrictions on the shape
of the spectrum for the chosen model of the surface.

This paper presents general analysis of invariant
properties of differential and statistical characteristics
of a wavy surface. It successively considers the
transformation of surface characteristics (surface
derivatives, spectral moments, and derivatives of the
correlation function) at rotation of coordinate axes and
develops a unified approach to the description of single-
parameter invariants of any order based on
representation of the transformation as a sum of
irreducible terms of the rotation group. For further
investigations by optical methods, the paper presents the
equations for invariants up to the sixth order and gives a
brief analysis of symmetry properties of statistical
characteristics for homogeneous, inhomogeneous, and
isotropic surfaces. Specific properties of the Gaussian
surface being of the most practical interest will be
considered in the second part of the paper.

1. Transformation and invariants of
surface derivatives

As the coordinate axes are turned through the
angle ¢, the relation between the old (x, y) and new
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(x', y") coordinates of surface points is described by the
following equations:

xX'=xcos@+ ysing; y =—xsing +ycose. (1)

Similar relations at rotation of the coordinate axes
take place for the differential operators as well:

o _ o, &
xS0 G tsine g,
o__ . 2 2
oy = TSm0 5y + cos @ 2 - 2

Introducing designations for derivatives of surface
elevation C(x, y) in the old and new coordinates

s oxboyt = ¢y P 0Py T = (3)

and using Egs. (2), in the general case we can write

) P q : _—
Gg= 2 2 1) C;, C, (cos 9)’ ™
r=0s=0

x (=sin )7 Cprg—r-s,r+s» (4)

where C are binomial coefficients. It should be noted
that just the same equations can be written for
derivatives I, of some function of surface elevations
and their derivatives, if F is the rotation invariant.
The last means that at rotation of the coordinate axes,
F transforms into itself and remains unchanged.
Equations (4) apparently correspond to the simplest
case F = ¢(x, y).

Define the differential operators as

D,y = 0"/ axPoy", Dy, =07 s0xPoy' 7, (5)
then F),, = D,F, F;,q = D},qF, and in place of Egs. (4)
for the derivatives F;,q we can write the similar
operator equations. It is important for us that the
equation for the operator Dj,, can be represented in the
form of a product of lower-order operator equations. It
follows herefrom that the same final result can be
obtained through the use of different intermediate
equations:
Dvp+r,q+s = D;,aq D;s = D;os D;q~ (6)

This property of the equations will be used below
for derivation of recurrence relations connecting the
invariants of different orders.

Writing (p + g + 1) of equations (4) for or

-
D;,q of the same order p + g, we can find all rotation
invariants for them. It follows from Egs. (2) that the

first-order derivatives have a single invariant
(o + ' * = Gl + G =tano, (D

where 0 is the surface slope angle. The second-order
derivatives are transformed according to the equations
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' 2 . .2
G0 = G cos™¢ + Lqq sin2¢ + Lo sin“o,
g/“ = C“ COS2(|’) + (1/2) (C()Z - QZ()) SiHZQP, (8)
’ .2 . 2
Co2 = G sin"@ — Cqq sin2¢ + Loy cos™o

and have two independent invariants

G0 + Coz = 2ug, Gao Coz — &i1 = Ko, 9

where uy and K, are the mean and total (Gaussian)
curvatures of u and K at the horizontal points (8 = 0).
For arbitrary surface points, they are, generally
speaking, joint two-parameter invariants of the first- and
second-order derivatives!:

w= [+ G5 Gap — 2G40 Cot ig + (1 + Cio)Cpal /247 %
K=Ky/d* d=1+tan’0 (10)
and usually written in the form
u= (ki + ky) /2, K= kiky,

where ky and ky are the principal curvature values,

kip=ux* w? - K2 We can also define the
differential ~ curvature o= (k{ — ky) /2 and the
curvature anisotropy s = ky/ky. In this case, every pair
of invariants (ky, ky), (u, v) or (K, s) can be taken as
independent parameters in statistical description of the
surface curvature (see, e.g., Ref. 5). With allowance
for the invariants (9), Egs. (8) can be written in the
form

L20,02 = g * vg cos(2p — 7)),
Ci1 == 09 sin(20 — ¢3), an

where vy = (u% - I<0)1/2 is the differential curvature at

horizontal surface points and @y=arctan[281,/ (&9—Ep2) ]

Continuing this process, we can show that the
arbitrary-order derivatives can be expressed through
rotation invariants by means of ordinary trigonometric
transformations. From the viewpoint of the group
theory, this representation corresponds to resolution of
transformation equations (4) into a sum of irreducible
terms of the rotation group. To reveal invariants, we

should represent the products (cos)” (=sing)? as sums
of functions of multiple arguments. This gives the
equations

(cos @) (—sin )7 =

n+1 sin(2r — 1)¢, for even p,
- ¥ B { (12a)
— cos(2r — 1), for odd p
for odd values of p + g =2n + 1,
(cos @) (—sin )7 =
¢ o)
> Bpg sin 27, for odd p,q,
=1
=< (12b)

n
Opg + > B,()Z)Cos 2rg, for even p,q
r=1
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for even values of p + q = 2n. Here a,, and B’(,Z) are the
coefficients, and for o, we can directly write the
general equation:

Opg = Ogp =
= (Plg) /122" nl(p/2)! (q/!] (even p, @). (13)

After substitution of Egs. (12) in Egs. (4), the odd-
order derivatives (p + ¢ = 2n + 1) can be represented as

!
Cpg =

Z B(r) IEZ)H sin [2r — Do — (péfl)ﬂ], for even p,

Z B(r) I%:Z)H cos [(2r-1) ¢ — cpgz)ﬂ], for odd p,

2 2 2
417 = 1950417 + [ohh 1%,
<P2n)+1 = arctan [®2n+1/ QQn+1] (14)

where Igz)ﬂ are invariants, in which the components

0., and 0%, are noninvariant linear combinations of
derivatives including derivatives with transposed

indices with respect to each other

e = T G, Conetrson
s=0

@ 15 ()
o3 = (D" Y Gt Cog ontt-2s- (15)
s=0

In these equations, the coefficients G2n+1 are integer
numbers, which can be found from recurrence relations
(see below).

For even order derivatives (p + g = 2n) we obtain

’
Cpg =

opg Uy + Z B(r) Vg:l) cos [2rp — (p( )] for even p,

Z B(r) ng) sin [2rg — (p2”)] for odd p,

(pgn) = arctan [hzn)/H(r)] (16)

where Uy, are invariants represented by the sum of
derivatives with even indices p and ¢, while the
components HS) and 43} in invariants V) are
invariant linear combinations of derivatives with
respectively only even or odd indices:

o (s
=2 Gy Con-2s25
s=0
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(r) Z A(r & C2n—2s,2sv

g:z) Z B(”) Con-2s—1,25+1- 17)
s=0

Here Ggfl) , A(r S), and Bg:l‘S) are integer numbers, which,
as G%ﬂ, are obtained automatically from recurrence
relations.

Using the multicative properties (6) for the

transformation equations, we can show that [V§}}]2 =

= U%n — 4R,,, and the invariants U, and Ry, meet the
recurrence relations

2
Rayiz = (Dog Usy,) (Dgy Uyy,) = (Dyy Uy

n = (D + D) Uz = (Dyy + D2)"Up =

n
= Z C; C2n*2r,27 ) (18)
r =0

where Uj = E(x, y). At the same time, Us, and the

components of the invariants Ig,?ﬂ and Vg:l) can be

found from the recurrence relations

1
an)ﬂ = Dyg Upy, (’)gn?ﬂ = DUy,

(r+1) _ (r) (r)
Qyyi =Dy Hy, — Doy by,
®§2+11) = Dy oD + Dyg hgz);

1 1
Upuio = Dy an)ﬂ + Dy oS i;

( _ ) ( .
H$)y = Dyg Q81 = Doy 0%y

h§2)+2 = Dg Q%)H + Dyg 03%2111 (192)

from which some others can be derived. In particular,
we have

)

Q/(Jrzﬂ) = (Dyy — D02) Qk - 2Dy of”,

(r+1) _

(0)¥5)) 2D1 Q + (D20 Dog) (Dg) (19b)

and quite the same relations for HY5” and A5
Besides, all these components (f= H, &, Q, ®) meet
the equations

f/('ci)2 = (Dyy + Doz)f}(er); 1 <r < E[(k+1) /2], (20)
where E(z) is the integer part of z. Note that the
analogous recurrence relation for Upiy is found from
Eq. (18).

Thus, the derivatives (,, of any order can be
uniquely represented as a sum (14) and (16) including
only rotation invariants. The recurrence relations (18)—
(20) allow invariants of any order to be sequentially
found. Obviously, at substitution of Dy, or Fy for Cogs
all invariants or their components can be written in the
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operator form for an arbitrary invariant function of
surface roughness and its derivatives. Particular
equations for the invariants up to the six order are
given in the next section.

2. Invariants and symmetry of statistical
characteristics

Consider the angular transformation of spectral
moments m,,;. They are determined by the equation?:

g = fI Sy, ky) KD AR dky, (21

where k' = (k,, k;) is the wave vector in the turned
coordinate system; S(k') is the spectrum of surface
elevations. At rotation of the axes, the following
equations are fulfilled:

ky=kycoso + k,sing, k=

y = ~Rysin @ + R, cos ¢;

Sk dk' = S(k) dk. 22)

Therefore, Eq. (21) can be represented in the form

P q 3 B
my= £ 3 O eos) T sing)
r=0 s=0

x mp+q—r—s,r+x . (23)

Note that Eq. (23) can be obtained using Egs. (4) and
(6) with statistical definition of moments in place of
Eq. (21): Mg g = (G Cys) (hereinafter the angular
brackets denote statistical averaging).

In a particular case at g = 0, from Eq. (23) we get
the equation

P _
mpo = my(9) = X C; (cosg)” " (sing)” My, (24)
r =0

which determines the moments m,(¢) of a single-
dimensional spectrum of the surface in the direction ¢
(Ref. 2).

Comparison of Egs. (4) and (23) shows that the
spectral  moments and surface derivatives are
transformed in the same manner at rotation of the axes.
It follows from here that the moments can be expressed
through rotation invariants as

m,,q =

(A »

> Bpg Topr1 sin [(2r = 1)¢ = @241, for even p,
_J (25a)

Z Bry 1571 cos [(2r = Do = 9341, for odd p

(odd moments: p + g =2n + 1),
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mpq =

Uy, + Z [3(7) V(r) cos [2re — cp%)], for even p,q,

Pq

- . (256)
n
Y Béf} Ve sin [2ro - 03], for odd p,q

(even moments: p + g = 2n).

In this case, for direction spectral moments qu((p) we
have

(r)  _ ol=p=q ~rtn _

Bpig.0 =2 Cpig (W+q=2n2n+1). (26)
The moment invariants IS4, Uy, and V3 are
apparently determined by Egs. (15), (17), and (18), in
which m,, should be substituted for ,,. Using the
recurrence relations (18)—(20) and substituting the

variables, for invariants and their components up to the
sixth order, we obtain

_ . (1) _ . (D
Up = mqg; Qi " = myg; 0f

_ LoD
Uy = myy + mgp; Hy ~ = myy —

= Mmoyq,
mp2; hg“ = 277111;

Q 1) _ + Q( -3 .

3 T M3 T My, 237 = M30 m12;

_ . 1) _ .

Ug = myo + 2moy + moy; Hy' = myg — mog;
1
/14(1 ) = 2(7?131 + m13);

6ma; 1P = 4Cmgy — my3);

Q27)

H(Z) = myo + mog —

Q5" = msg + 2mgy + myg, 5P = msg — 2mgy — 3myy,
QP = msy — 10mgy + 5Smyg;
Us = mgo + mog + 3(myy + moy);
HEY = mgy + myy = mag — mog;
12(1) = 2(msq + 2ms33 + mys);
HE? = mgo + Smz — Smag + mog,
hg) = 4(ms1 — mys);
H(j) = mgy — 15myy + 13myy — myg;
hG = 6msy — 20m33 + 6mys,

where the components mgz)ﬂ are omitted for brevity.
We can write them, substituting, according to

Eq. (15), mg, for m,, in the components ng)ﬂ and
multiplying these equations by (=1)"'; for example,
0§ = mog + myy, ©f? = 3myy — myg.
Higher-order invariants can be found directly using
the recurrence relations, if Dy, in them is considered as

a formal operator acting on moment indices in such a
way that the index summation rule is fulfilled:
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Dygmys = Mpyiyp grs. Thus,  for  example, using
Egs. (20), (27), and this rule we can easily find

Ug = (Dyg + Do) U = mgg + 4mgy +
+ 6myy + dmog + myg;
HEY = (Dyy + Dy HSY =
= mgy + 2mgy — 2mog — Mg (28)

and so on. Note that, rigorously, Dy, as a differential
operator can be applied only to correlation functions
(see below).

According to Eq. (26), the moments of odd (even)
orders keep their values at rotation through the angle
Ag equal to 2n and 7, respectively. This means that
their lowest internal symmetry is different and
characterized, following the commonly accepted
terminology,® by the first- (second-) order rotation
axis, where the axis order equals 2n,/A@. As known,
odd moments are nonzero only for an inhomogeneous
surface, for example, under the conditions of
developing sea roughness, when the wave profile
asymmetry is observed and S(-k) = S(k). However, at
established (developed) roughness, the sea surface

becomes homogeneous (odd moments and all invariants

1§;’+1 vanish), the symmetry of the spectrum increases:

S(=k) = S(k), and all even moments can be represented
as

Mpq = (_1)”qu\v(x: y)|0 =
= (1) (0, p + g = 2, (29)

where y(r) is the correlation function;

() = [ S(K) costkr) dk. (30)
Here r=(x,y) =R’ - R, and R’ and R are the
coordinates of two surface points. At rotation, the even
derivatives are transformed as (—1)"m,,q, therefore the
functions m,, = (_1)anq have the same invariants

Uzn(npg) and Vg;)(npq), which meet the recurrence
relations

n
k
Uzp = (D + D) Uz = 2 Cpy Map-2k, 2k
k=0

H$)y = (Dyg + Dyp) HS),
153 = (Dag + Do) 1)),
HY,L5 = (Dag = Dgy) HYy) = 2Dy 155,
WSE = 2Dy HY) + (Dyg — Dop) B8, 1 <7 < n. (31)

Under the conditions of developing roughness,
when the surface, as was mentioned above, is
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inhomogeneous (more exactly, quasi-homogeneous?), its
statistical description acquires a local character, that is,

yv=yR, 1), S=SR, k), Mg = m,,q(R). (32)

In this case, it makes sense to determine the second
correlation function

O(R, 1) = f S(R, k) sin(kr) dk, (33)

o0

then for the odd spectral moments we have
Mp(R) = (=1)"®,,(R, 0), p+q=2n+1. (34)

At odd (p+¢q), the Lpg = (C1D"x @y
apparently have invariants I §2)+1(§M) meeting the
recurrence relations

functions

085 = (Dyg + Do) Q5hi; 0%hg = (Dag + Dgz) 03t

Qg;’ﬁé) = (Dyg — Dg) Q5%t — 2D 11054,

03%1%) =2Dy4 ng)ﬂ +

+ (DZO - Doz) 0)52)_”, 1<r<n+1. (35)

Consider the isotropic surface, whose all
characteristics are independent of the angle ¢. With
allowance for this fact, it follows from Eq. (25) that

HS,) = 1) = Q) = ofiky = 0;
Mpg = Mgp = ApgUs, (even p, q; p+q=2n), (36)

that is, all invariants, except for Us,, are degenerated,
therefore all the odd moments are zero, and only one
among all the nonzero even moments of any order is
linearly independent. Note that the isotropic surface is a
particular (extreme) case of a surface. In this case, the
spectrum and its nonzero moments have a higher
symmetry or the symmetry of the Curie group, when
the order of the rotation axis is infinite.® In the similar
manner, we can consider the properties of symmetry
and degeneration of invariants for any other surface
models.

Conclusion

In this paper, the invariants of differential and
statistical characteristics of a wavy sea surface are
successively considered and a general approach to their
description is developed. It has been shown that the
derivatives of surface elevations and spectral moments are
transformed in the same manner at rotation of coordinate
axes and they can be uniquely represented as sums of
only rotation invariants. The derivatives of the correlation
function can be represented in the same way.

The recurrence formulae have been obtained that
allow single-parameter invariants of any order to be
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found. The approach developed here can be used to
consider joint (multiparameter) invariants depending on
several surface fields simultaneously.

The results of this work form the theoretical
prerequisites for rigorous justification of optical methods
for remote sensing of a wavy sea surface.
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