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Adaptive correction of beams from several lasers
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An adaptive system for correction of radiation from several mutually incoherent lasers is analyzed.
Different adaptive correction algorithms are studied. It is shown that the character of an algorithm and
its parameters significantly affect the system behavior. The speed of the adaptive correction system can be
considerably increased due to proper selection of the algorithm.

Introduction

Application of adaptive optic systems (AOS) to
focusing radiation from multibeam lasers seems to be
promising in devices forming laser radiation with the
given distribution of the field amplitude or intensity in
some spatial region. Examples of the multibeam lasers
are multichannel lasers'2 which make an assembly of
several parallel waveguide tubes; the Yupiter laser3
having a coaxial design of the discharge chamber and
generating radiation in the form of beams of multipass
modes (M-modes), as well as arrays of semiconductor
lasers.4 Multibeam lasers find use in optical astronomy,
in systems for long-range transmission of radiation
energy, as well as in open laser communication
channels. Application of such systems for atmospheric
optical communication lines is illustrated by “laser
bridges” of MicroMax Computer Intelligence Inc.>
These systems with a radiation source in the form of a
set of semiconductor lasers are used in big settlements
with  continuously  growing needs for new
telecommunication services and no possibility of using
fiber optics lines.

At the same time, practical use of the multibeam
laser radiation in communication systems is limited due
to atmospheric turbulence, which manifests itself in
amplitude-phase distortions, decrease of radiation
coherence, and random angular fluctuations of laser
beams. Under these conditions, tuning beams toward
the receiver and confining them within the receiver’s
aperture is a very urgent task, in which the use of
adaptive optical systems, being, in essence, systems for
angular correction of radiation, becomes a necessity.

Characteristics of one of such systems designed for
correction of wave fronts of the Yupiter laser were
considered in Refs. 6 and 7, which present the results
of numerical simulation of the laser, as well as
demonstrate how the optical parameters of the
measuring-control channel and radiation polarization
affect the AOS operation. Investigations in these papers
were conducted with allowance for coherent properties
of M-modes of the Yupiter laser.

The search of ways to improve characteristics of
real devices due to the AOS usage in the “laser bridge”
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systems revealed the need in additional investigations.
Their urgency is caused by the fact that laser beams in
these systems are not mutually coherent. Therefore, the
results obtained for coherent systems cannot be directly
extrapolated to the multibeam “laser bridges.”

In this paper, we study functioning of an adaptive
optical system designed for -correction of angular
positions of beams from several mutually incoherent
lasers.

Mathematical model

In the accepted model of an adaptive system, the
correction quality is estimated in the standard way,
that is, from the value of the focusing functional J4 for
radiation having passed through the diaphragm of the
measuring-control channel.8

As is known, in this case the focusing functional is
determined by the equation

Ja=P/Py, )]

where P is the power of radiation having passed
through the measuring diaphragm, P is the power of
radiation having passed through the same diaphragm in
the case of ideal correction, that is, when all beams are
brought together to the diaphragm’s center.

Note that the receiver’s aperture should be taken
as a diaphragm in the considered laser bridges.
However, the simulation can be restricted to the case of
a diaphragm placed at the focus of an ideal lens located
near the radiation source, since the character of the
field distribution at the focus and in the far zone is the
same. Certainly, this is valid for beams in the
atmosphere affecting only their angular parameters. It
is also assumed that the effect of atmospheric
turbulence on the beam amplitude parameters is
negligible. These assumptions correspond to the case of
the weakly perturbed atmosphere and, thus, weak
fluctuations of parameters of the received signal, when
the beam profile is characterized by a rather high
degree of homogeneity.9

It is usually believed that radiation is well
corrected at J4 > 0.8 (Ref. 8). In the process of an
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adaptive system operation, the focusing functional is
estimated at each adaptation step, and the wave front is
corrected so that J4 satisfies this condition.

In the mode under analysis, it is assumed that the
amplitude distribution A; in the cross section of each
beam in the diaphragm plane is Gaussian and the same
for all beams:

Aj = exp[—(r;/ W)?], (2)

where W is the cross section radius of each beam; rj is
the current radial coordinate of a beam in the system
related to its center; j is the beam number (§ = 1, 2, 3).

The energy parameters of the beam in the
diaphragm plane will be analyzed in the coordinate
system with the origin at the diaphragm center. The
number of lasers entering into the system is taken equal
to three, since just this number is characteristic for the
existing “laser bridges,” in particular, those made by
MicroMax.

Perturbations lead to random arrangement of
beams. Denote the distance from the center of each
beam to the diaphragm center as R; Its position in the
accepted coordinate system is characterized by angle ¥;.
In this case, the equation for the radiation power of
beams of three mutually incoherent lasers within a
diaphragm can be written as

aln 3
P IIZ'A]'(RjrlI’]',V,\V)|2rdrdW , 3)
00 j=t

where a is the diaphragm radius; » and y are current
radial and angular coordinates. The value of Py is
determined by the same equation at R; = 0.

To select the efficient correction algorithm, we
should determine the behavior of the focusing
functional at different variants of the control. In
multibeam systems, two variants are possible:
sequential and parallel.6 In the first case, each next
beam is centered at the diaphragm only after the
control over the previous beam provides for the highest
(current) value of J4q. In the case of the parallel
variant, the control action for each beam is calculated
only for one step, and then the system passes on to
controlling the next beam. Tt is assumed that the
correction takes rather short time, during which
atmospheric  perturbations do not change beam
positions. In the process of operation, the position of
only one beam is corrected at every instant, while the
other beams are beyond the control.

To assess the properties of the focusing functional,
a program was developed for determination of J4 at
forced change of R;. Calculations were conducted at the
following system parameters: beam radius in the
diaphragm  plane W = 0.3 mm, laser radiation
wavelength A =10.6 um, and diaphragm radius
a =0.2 mm.

The calculated results are shown in Fig. 1. The
plot is drawn for the case of sequential control, when
the beams were initially located randomly along one of
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coordinates in the diaphragm plane. To simplify
analysis, R; was changed also along this coordinate
with the step identical for all beams. In that case, it
was convenient to analyze the behavior of J4 depending
on the step number %, as shown in Fig. 1.
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Fig. 1. Focusing functional J4 as a function of the step
number k.

Note that variation of Ry for every subsequent
(j + 1) beam began once the previous beam was set in
the position corresponding to the local maximum of Jy4.
In this connection, the bold lines in Fig. 1 are for the
moments of transition to the control of the next beam,
and the dashed lines are for the J4 behavior after each
beam has gone over its maximum.

It follows from Fig. 1 that dependence of J4 on
the position of each beam is rather smooth function
having one global maximum. This dependence of the
focusing functional allows us to use not only the
frequently used gradient method, but also the Newton
method for angular correction, since, as known,10 the
latter is one of the fastest methods, but it gives good
results only for smooth functions.

Results of numerical simulation
of an adaptive system

To assess the efficiency of the sequential and
parallel control algorithms, the operation of the
adaptive correction system was analyzed using the both
methods for each algorithm.

In the gradient method, the maximum of the
focusing functional is determined through sequential
comparison of values of J4(u) and J4(up+q) at control
actions wu; and wpyq determined during the iteration
procedure!0:

Upry = up — afq, (4)

where o = const is the parameter of the gradient
method; k is the iteration number (¢ =0, 1, 2, ...).

The correction process was simulated with the
system and beam parameters given in the previous
section. Numerical experiments show that the best
results in this case are achieved at o =0.1. The
accuracy of the gradient method, on reaching which the
adaptation process was completed, was set as ¢ = 0.01.
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Figure 2 shows the dependence of the focusing
functional on k in the process of adaptation by the
sequential and parallel algorithms. Both algorithms are
based on the gradient method. In the first case, to
complete adaptation at Jq= 0.958, 36 iterations were
used. In the second case, after 58 iterations J4 increased
only up to 0.874.

Jd
1 P 5
N/ _}___
!
0.8 7
7
_
s
0.6 1
I
i/
0.4 7
il
l/_/‘
i
0.2
J
p ’
0
20 40 k

Fig. 2. Variation of the focusing functional in the process of
adaptation by the gradient method: sequential (7) and
parallel (2) control algorithms.

In the Newton method, the extreme point of
JaCuy) is determined by the algorithm10:

Upe1 = up — BUL/ T, (5)

where B = const is the parameter of the Newton
method.

The AOS operation was simulated at the same
system and beam parameters as in the gradient method.
We took B =-0.4 for the parameter of the Newton
method. Calculations show that this value provides for
the best adaptation characteristics. The results of
numerical analysis are shown in Fig. 3.

In the sequential control algorithm, the adaptation
is completed for 19 iterations with Jq = 0.882. In the
case of the parallel algorithm, the focusing functional
achieves Jq = 0.851 for 41 iterations, that is, in this
case the sequential algorithm is again faster and
provides the higher correction quality. Thus, the
sequential algorithm with the use of the both (gradient
and Newton) methods is preferable as compared to the
parallel one.

The result obtained can be explained by the
following peculiarity of the AOS operation: radial
motion of each beam, characteristic of the sequential
algorithm, provides, on the average, a steeper
dependence of J4 on the control action than in the case
of the parallel algorithm, in which the beams are
contracted to the diaphragm center, on the average, by a
spiral. In its turn, the higher steepness of J4 variation
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allows the position of the maximum of the focusing
functional to be determined more correctly in the
correction process.
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Fig. 3. Variation of the focusing functional in the process of
adaptation by the Newton method: sequential (7) and
parallel (2) control algorithms.
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Since the most efficient method is needed in real
AOSs, it is interesting to compare the algorithms’
speeds based on the gradient and Newton methods.
Figure 4 depicts variations of the focusing functional in
the process of adaptation by two above methods in the
sequential control algorithm.
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Fig. 4. Comparative characteristics of the methods in the
process of adaptation by the sequential algorithm: Newton
method (1) and gradient method (2).

The results depicted in Fig. 4 clearly indicate that
with these AOS parameters the use of the sequential
control algorithm based on the Newton method allows
the speed of the adaptive correction to be almost
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doubled as compared to the algorithm based on the
gradient method.

Conclusion

The results of investigation suggest the following
conclusions:

1. For the conditions of an adaptive system
functioning considered in this paper, the sequential
control algorithm is more efficient than the parallel one
and provides a higher speed at a higher quality of the
angular correction of laser beams.

2. The dependence of the focusing functional on
the control variables for several mutually incoherent
lasers is a rather smooth function, which allows the use
both of the gradient and Newton methods for the
angular correction of beams.

3. The algorithm based on the Newton method
allows the system speed to be almost doubled as
compared to the algorithm using the gradient method.
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