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Simple, one-dimensional model of bending-rotation motion in a triatomic molecule is used to 
estimate the off-diagonal Hamiltonian matrix elements related to the high-order resonances in water 
molecule. It is shown that the resonances of this type arise due to strong centrifugal distortion near 
the linear configuration in a triatomic molecule having low barrier to linearity. The off-diagonal 
matrix elements are quite large, if the wave functions are near the linear configuration.   

 

Introduction 
 

The study of absorption spectra of gaseous 
atmospheric constituents and pollutants in the near-
IR and visible spectral regions are of certain interest 
for atmospheric spectroscopy. As known, weak 
molecular absorption lines due to transitions to 
higher vibrational states affect the global Earth's 
radiation budget.  

High-excited rotational-vibrational states of 
molecules are connected with strong resonance effects. 
Besides Coriolis, Fermi, and Darling–Dennison 
resonances typical of triatomic molecules, higher-
order resonances, in particular, the so-called HEL 
(Highly Excited Local) resonances occur at a rather 
strong excitation.1 These resonances connect the 
states belonging to different resonance polyads, and 
they are caused by strong centrifugal distortion near 
the linear configuration. Earlier, in Ref. 2, in 
analyzing the water vapor spectra it was shown that 
the HEL-resonances lead to appearance of a lot of 
lines associated with transitions to high bending 
states (050), (060), (070), (080), and (0 10 0) in the 
spectra.  

The aim of this work was to assess the off-
diagonal matrix elements of the Hamiltonian that are 
related to the HEL-resonances. The Í2Î molecule is 
considered as an example, but this effect may 
manifest itself in other triatomic molecules having a 

relatively low barrier to linearity, such as, CH2, H3

+

 
and others. The Hamiltonian of a triatomic molecule 
in natural coordinates is used, what allows the 
calculations to be performed for high-excited 
vibrational states lying above the barrier of the linear 
configuration.  

 

1. Hamiltonian of a triatomic molecule 
 

For describing the high-excited rotational-
vibrational states of triatomic molecules, it is 
convenient to use the natural coordinates: lengths of 
the bonds and the angles between them. The 
molecular Hamiltonian in the natural coordinates has 
the form 

3:  
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are dimensionless vibrational coordinates; ri is the 
length of the ith bond (i = 1, 2); r

e
 is the 

equilibrium value of the bond length; θ  is the angle 
between the bonds; { },A B AB BA= +  is the 
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The parameters b1, b2, b0 are determined by the 
following equations:   
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where µi is reduced mass of ith bond; M is mass of a 
“central” atom; mi are masses of the “end” atoms. 
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The system of coordinates fixed in the molecule 
is defined as follows. The molecule lies in the xz 
plane, the axis x is directed along the bisector of the 
angle ÍÎÍ and is the second-order symmetry axis in 
the equilibrium configuration.  

The potential energy function can be presented as  

( ) ( ) ( ) ( ) ( )s s1 2 1 2 1 2b, , , , .V z U U U z U zρ ρ = ρ + ρ + + ρ ρ     (8) 

2. Calculation of resonance matrix 

elements 

The effective Hamiltonian HΓ
%  is defined as 

usually:  

 
,

;ij

i j

H h i jΓ
∈Γ

= ∑%    (9) 

∉Γ

= ψ ψ +

 
+ ψ ψ ψ ψ + + 

− −  
∑

0 0

0 0 0 0

0 0 0 0

1 1 1
...,

2

ij i j

i jk k
i jk kk

h H

H H
E E E E

 

  (10) 

where Γ is the set of states considered together. The 
polyad Ã is assumed large enough, so that it 
incorporates all the resonance interactions significant 
for the formation of the energy spectrum. In this 
case, the denominators in the right-hand side of 
Eq. (10) are assumed large enough, and second-order 
additions are small. 

Our task is to assess the contributions from 
different terms of Eq. (1) into the off-diagonal 
elements connected with the HEL-resonances. It is 
necessary to determine which terms of the 
Hamiltonian give the largest contribution to the 
HEL-resonances. The last term in Eq. (1), namely, 
the separation between the bending and stretching 
potentials from the total intramolecular potential can 
be considered small, because of the representation (8). 
The direct calculation has shown that the 
contribution of U(ρ1, ρ2, z) is smaller by an order of 
magnitude. Consequently, we should analyze only a 
part of the Hamiltonian that is connected with the 
molecular rotation. The third (2b0zp1p2) and fifth 
hM(ρ1, ρ2, z) terms in Eq. (1) are proportional to 
1/Ì, and, consequently, give small contributions, 
while the sixth and seventh terms contribute only to 
the resonances between the states of different symmetry. 
 For estimation we use the model Hamiltonian 
for the bending-rotational problem that follows from 
the Hamiltonian (1). In this case, we take into account 
the rotation around all the three axes of inertia.  

In the approximation of the frozen stretching 
coordinates, the model Hamiltonian has the form:  
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where be = h/8π2cµre

2. The operator (11) describes the 
bending vibration and rotation of the molecule 
around all the three molecule-fixed axes.  

For determination of the effective rotational 
Hamiltonian, let us use the vibrational part of the 
Hamiltonian (11) as a zero-approximation operator:  

 2
e e0 b(1 ) 2 ( )

z z
H p z p bU z z= − + −  (12) 

and the following operator as a perturbation  
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The problem on eigenvalues cannot be solved 
exactly with the Hamiltonian (12). For 
determination of zero-approximation energy levels 
and wave functions, we use the direct variational 
method with the basis functions: 
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is the normalized factor. The zero-approximation 

wave functions ( )0

V zψ  are determined as a linear 

combination  
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and the energy levels EV

2

 are obtained as eigenvalues 
of the matrix calculated with the basis functions (14). 
The potential energy function of the bending 
vibration can be presented in the form  

 2 3 4
e e e0 2 3 4b( ) ( ) ( ) ( ) ... .U z z a z z a z z a z z− = − + − + − +  

For estimation of the permanent HEL-
resonances, it is necessary to calculate the off-
diagonal matrix elements of the perturbation operator 
that relates the states with | ∆V2 

| = 1, 2, 3, 4. To 
cause rather strong mixing of wave functions, the off-
diagonal matrix elements should be comparable with 
the energy difference between the resonant levels, 
that is, ∼  10 cm–1. Thus, the problem consists in 
calculation of matrix elements of the operator (13) 
with the zero-approximation functions (15). 

The first-order correction  
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(for ,

nm nm
xyJf f  the equations are quite similar) 

determines the rotational constants at n = m and the 
resonance constants at n ≠ m. Note that here we do 
not consider the HEL-resonances between vibrational 
states of the same symmetry.  

For calculation we used the following 
parameters: re = 0.95843, ∠θ e 

= 104.4°, a2 

=18975, 
a3 

= 1728, a4 

= 5154 cm–1, α = 1.1, β = 1.1, the basis 
dimension N = 20; all these data have been borrowed 
from Ref. 4.  

The wave functions ( )0

V zψ  are shown in Fig. 1. 

Note that as the excitation increases, the values of 
the wave function near the linear configuration 
increase, and, as a consequence, the contribution of 
the linear configuration to the diagonal and off-
diagonal matrix elements increases as well. 

 

 

Fig. 1. Wave functions of the (0V0) states. 

Figure 2 depicts the dependence of the matrix 
elements | 〈ψV

0
 | (1 + z)–1

 | ψV+∆V
0

〉 | (I) on the quantum 
number V2. Note that these matrix elements grow 
rather fast with the increase of V2 and become 
comparable with the differences between the 
rotational levels. At the same time, the matrix 
elements of the operator | 〈ψV

0
 | (1 – z)–1

 | ψV+∆V
0

〉 | (II) 
vary only slightly. Thus, it can be concluded that it 
is just the centrifugal distortion associated with the 
linear configuration H–O–H and the resonance 

parameters fk 
nm

 that determine the HEL-resonances, 

while the contributions of the parameters fJ 
nm

, fxy 

nm
 

must be small. 

Conclusions 

In conclusion, it should be noted that here we 
present only the general estimate of the V2-dependence 
of the constants of the HEL-resonances, and for more 
accurate calculation it is necessary to use more 
accurate potential energy function and to take into 
account the relation between the stretching and 
bending vibrations. Despite the numerical estimates we 
have obtained in this paper for water molecule, it can 
be suggested, in general, that centrifugal distortion 
in any triatomic molecule having a rather low energy 
barrier for the linear configuration must manifest 
itself as mixing of the states, whose wave functions 
are located just near the linear configuration. It 
should be noted that earlier the constants of the 
resonance operators of the effective Hamiltonian of 
the H2O molecule were presented in Ref. 5. 
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