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The possibility of developing Monte Carlo statistical algorithms for solving the radiative 

transfer equation in the vector form is demonstrated. The efficiency of such an algorithm is tested, and 
the polarization structure of a return signal is analyzed tentatively using a model medium consisting 
of gyrotropic scattering particles. 

 

Introduction 
 
In applications of physical optics, in particular, 

to optics of the atmosphere and hydrosphere, it is often 
necessary to take into account the anisotropy of 
scattering particles. Such particles may present, for 
example, in the tropospheric aerosol of the soil-erosion 
origin (whose main component is quartz), in a hydrosol 
as some types of organic particles, and in clouds as ice 
crystals. Weak manifestations of the optical activity of 
natural disperse media under natural conditions may 
intensify under extreme perturbations of the electric 
field (the square-law Kerr effect). Thus, for example, 
in Ref. 1 it was shown that in the period prior to 
seismic events the electric field strength redistributes 
spatially over local volumes of the earth’s crust. In 
Ref. 2 it was shown that these variations of δÅ 

markedly manifest themselves through the anisotropy 
factor, and polarimetric indices of the earth’s crust 
transform in such cases. It is quite probable that 
their effect on the aerosol particles of soil-erosion 

origin will be similar. 
Optical properties of the elementary scattering 

volume of an anisotropic medium not always can be 
described by the characteristics of an equivalent 

isotropic medium. 

3
 Estimations of the energy 

characteristic of radiation are usually restricted to 
consideration of the scalar transfer equation. For 
optically active media, this approach is not justified 
physically, and it may prove necessary already for 
estimation of the radiation intensity to solve the 
system of integro-differential equations for the Stokes 
vector-parameters.4 Polarization effects are taken into 
account in analyzing the radiation propagation through 
anisotropic media in a number of astrophysical 
problems.5 The asymptotic method for calculation of 
the Stokes vector-function in the case of illumination 
of the medium consisting of randomly oriented 
anisotropic particles by an infinitely wide light beam 
was developed in Ref. 6. The method of statistical 
simulation is optimal for studying the radiation 

propagation in a medium, where deep conditions fail. 
This paper proposes an approach to construction of 
the statistical simulation algorithm for estimating the 
linear functionals of the solution of the radiative 
transfer equation in a vector form. 

 

Method of solution 
 
In the general case, the radiative transfer equation 

with regard for polarization has the form  

 ( , ) ( ) ( ) ( , ) ( ) ( , );∇ = −σ ω + σI r r A r I r r B rω ω ωω ω ωω ω ωω ω ω  (1) 

 ( )
( , ) ( , , ) ( , ) d ;

4

rΛ ′ ′ ′=
π ∫B r P r I rω ω ω ω ωω ω ω ω ωω ω ω ω ωω ω ω ω ω  (2)

 

 2 1( , , ) ( ) ( , , ) ( ),i i′ ′= π − −P r L R r Lω ω ω ωω ω ω ωω ω ω ωω ω ω ω  (3) 

where I = (I, Q, U, V) is the Stokes vector parameter; 
ωωωω = (a, b, c) is the unit vector of the direction 
r = (x, y, z); σ is the extinction coefficient; Λ is the 
single scattering albedo; A is the extinction matrix 
normalized to σ; Ð is the angular matrix; R is the 
scattering phase matrix; L is the rotation matrix 

7; i1 
and i2 are the angles between the scattering plane and 
planes including the axis of the coordinate system 
and the vectors ωωωω and ωωωω′, respectively. 

The algorithms of the Monte Carlo method, in 
particular, for solution of the radiative transfer 

equation are most correctly constructed based on the 
integral equation in the probabilistic interpretation of 
its kernel. For an isotropic medium, the transition 
from a system of integro-differential equations to a 
system of integral equations is shown, e.g., in Ref. 8. 

For some anisotropic media, this transition can  
be performed using the method of normal waves, 

4
 

where the extinction matrix A is diagonalized using 
some numerical matrix T. By multiplying Eq. (1) by T 

we obtain 

1( , ) ( ) ( ) ( , ) ( ) ( , ).−∇ = − +TI r r TA r T TI r r TB rω ω σ ω σ ωω ω σ ω σ ωω ω σ ω σ ωω ω σ ω σ ω  (4) 



968   Atmos. Oceanic Opt.  /December  2003/  Vol. 16,  No. 12 G.M. Krekov et al. 
 

Here the matrix TAT
–1

 has a diagonal form, which 
allows Eq. (4) to be solved for TI, if TB is assumed a 
known vector function. Multiplication by T–1 gives a 
system of integral equations for I, whose structure is 
determined by the matrix A. 

Let us consider, as an example the medium 
consisting of randomly oriented particles having no 
symmetry planes and, consequently, neither symmetry 
axes nor symmetry centers (isotropic gyrotropic 

medium). The extinction and scattering phase matrices 
in this case have the forms 

9: 
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The boundary conditions are believed preset in 
the plane Y = 0, and assuming the vector function 
I0(r0, ωωωω) known at b > 0: 
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The solution of the inhomogeneous equation for 
TI(r, ωωωω) can be presented as  

 
0

0

1
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( , ) ( , ),

y

b
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(9)

 

where the matrix αααα(r, r′) is obtained from the matrix 
αααα(r, r0) through the replacement of the lower 

integration limit 0 by ξ and r′ by r′′  = r + (η – y)ωωωω/b. 
Multiplying Eq. (9) by T–1 gives the sought formal 
solution of Eq. (4) at b > 0: 

1 1
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0

( , )

1
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The matrix F(r, r′) = T
–1αααα(r, r0′ )T multiplied, for 

a convenience, by eτ(r, r′) can be reduced to the form 

14 14

23 23

23 23

14 14

cosh 0 0 sinh
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( , ) .
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By substituting Eqs. (2) and (11) into Eq. (10) 
we obtain the integral equation for the Stokes vector-
function  

0
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After some simple transformations, Eq. (12) and 
that similar to it at b < 0 can be reduced to the 
following integral equation: 

 ( ) ( , )d ( )I

X

′ ′= +∫I X K X X X XΨΨΨΨ  (13) 

with the kernel  
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and the free term  

 0( , )
0 0( ) ( , ) ( ),e

−τ= r r
X F r r IΨ ωΨ ωΨ ωΨ ω  (15) 

where X is the phase space of coordinates and 

directions, X = (r, ωωωω). 
Equation (13) can be interpreted as the equation 

of transfer of the polarized light in a fixed isotropic 
medium with the extinction coefficient σ(r) and the 
angular matrix of transformation of the Stokes 
parameters F(r, r′) P(r, ωωωω, ωωωω′). Then, for the collision 
density vector function ϕϕϕϕ(X) = σ(r)I(X) we have 

  ( ) ( , ) ( )d ( ) ( );′ ′= + σ∫X K X X X X r X

X

ϕ ϕ Ψϕ ϕ Ψϕ ϕ Ψϕ ϕ Ψ  (16) 



G.M. Krekov et al. Vol. 16,  No. 12 /December  2003/ Atmos. Oceanic Opt.  969 
 

 

 ( , ) ( ) ( , )/ ( ).I
′ ′= σ σK X X r K X X r  (17) 

 This interpretation of Eq. (13) allows the 
Monte Carlo algorithms developed for the isotropic 
medium to be used with minor changes in the 
calculation of the linear functionals of ϕϕϕϕ [Ref. 6]. 
These changes largely deal with the procedure of 
recalculation of the Stokes vector-parameter after 
scattering, which, in contrast to that in Ref. 6, 
involves the following equations: 
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′ ′= + + +
= −
= +
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′ ′= −
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′ ′= + + +
′ ′= + + +

 (18) 

However, it should be noted that Eq. (13) and, 
consequently, Eqs. (14), (15), and (18) are valid if 
the matrix À is specified by Eq. (5). For other types of 
anisotropic media, where there are normal waves, 

2 it 
is necessary to repeatedly derive (by the above scheme) 
the integral equation for the vector-function ϕϕϕϕ(X), 
since the diagonilizing matrix Ò will have different 
form. Below we test the approach proposed using a 
particular example. 

 

Calculated results 
 

In Ref. 10 it was shown that the sensitivity of the 
optical characteristics to anisotropic properties of the 
medium manifests itself most strongly in the behavior 
of the components of the scattering phase matrix at 
the angles larger than 150°, that is, in the backward 
directions. Therefore, the initial and the boundary 
conditions of the problem correspond to the scheme 
of a monostatic lidar sensing. It is assumed that the 
linearly polarized light delta-pulse is incident on a 
plane-parallel homogeneous scattering layer ∆y with 
the preset optical properties. A point source and a 
detector are located at the origin of coordinates, and 
their optical axes are normal to the layer. The source 
emits isotropically to the solid angle 2π(1 – cosϕsource), 
and the solid angle of the detector’s field of view is 
2π(1 – cosϕd). The lidar is spaced by y0 from the 
medium. The whole set of the optical characteristics 
is precalculated taking into account anisotropy of 
spherical particles. The calculation was done for the 
wavelength of 0.5 µm and aerosol particles distributed 
according to the lognormal law with the median radius 
of 0.03 µm and the distribution variance of 0.74 

[Ref. 11]. The refractive index is n = (nL + nR)/2 = 
= 1.55, where nL and nR are the refractive indices for 

the left and right circularly polarized waves, whose 
difference is proportional to the optical activity of 
the medium αs, and in the calculations they were 
taken equal to 10–4

 and 10–2. Figure 1 shows the 
angular dependence of the components of the 
scattering phase matrix Rij = Rij/R11.  

 

 
Fig. 1. Angular dependences of the scattering phase matrix 
components at αs = 10–2. 
 

The algorithm involves statistical estimation of the 
following integral transfer characteristics: 

integrals of Stokes vector-parameters over some 
regions of the phase space [X×T]: 

 
s

1
d d ( , , )d ,

tr

r t t
c t

∗ ∗ ∆∆ ∆Ω

=
∆ ∫ ∫ ∫I I rω ωω ωω ωω ω  (19) 

where c is the speed of light, 
depolarization degree 

 
s s s s

( )/( ),I Q I Qδ = − +  (20) 

orientation of the polarization plane  

 
s s

0.5arctan( / )U Qχ =  (21) 
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and ellipticity  

 ( )2 2 2 2
s s s stan 0.5arcsin /( ) .V Q U V ε = + +

 
 (22) 

The calculations were performed at ϕsource = 
= 0.8 mrad, σ = 0.3 m–1, ∆y = 20 m, and y0 = 200 m 

with the length of the statistical sample sufficient for 
maintaining the mean level of variance at the end of 
the sensing path within 10–15%. The solution of 
Eq. (1) was compared with the estimates obtained 
from solution of the vector and scalar equations for 
the equivalent medium consisting of isotropic particles 
with the same refractive index and the particle size 
distribution. For the case of weak anisotropy αs = 10–4, 
the off-diagonal elements of the matrix R, except for 
R12 and R34, have the values smaller than 0.01, and 
the components of the extinction matrix χ14 and χ23 are 
about 10–3, that is, in this case the differences between 
optical properties of the anisotropic and isotropic media 

are insignificant. Therefore, the time dependences of 
the intensity of single and total scattering obtained 
from solution of Eq. (1) almost coincide (Fig. 2) with 

the solution of the scalar equation. The degree of 
radiation depolarization (curve 3, Fig. 2) is also 
characterized by the same behavior, and the parameters 
ε and χ turn out close to zero. 

 

 
Fig. 2. Intensity of the signals due to single (curve 1) and 
total (curve 2) scattering and the degree of depolarization 
(curve 3) as functions of the optical depth at ϕd = 0.8 mrad 

and αs = 10–4; dots on the curves correspond to calculations 
for an isotropic medium.  

 

The increase in the anisotropy factor of the 

medium αs to 10–2 leads to an increase in the off-
diagonal components of the matrix R, and the 
components of the extinction matrix also achieve 
marked values χ14 = 0.0033 and χ23 = –0.055. It should 
be noted, however, that this value of αs is extremely 
high for the gyrotropic medium, and the possibility 
of using the perturbation theory up to the first order 
in calculations of the scattering and extinction matrices 

is still in question. For these reasons, the corresponding 
matrices should be considered as model ones. 

In this model optical situation, the intensity of 
the total signal I(τ) exceeds, though only slightly, the 
intensity of the signal I′(τ) reflected from the medium 
consisting of isotropic spherical particles. This value 
increases with increasing τ = σct and the angular 
aperture of the detector ϕd (Fig. 3a). 

 

 
a 

 
b 

 
c 

Fig. 3. Polarization properties of radiation versus dimensionless 
time τ = σct at αs = 10–2. Curves 1–3 correspond to the 
detection angles ϕd = 0.8, 3, and 6 mrad. Indices at the 
digits denote the corresponding parameters. 
 

The degree of radiation depolarization shown in 
Fig. 3b decreases significantly (almost twofold) as 
compared to the case of an isotropic medium (see 
Fig. 2), and at the small angles ϕd there are no 
manifestations of the anisotropy of optical properties 
of the medium. As the viewing angle increases, the 
light becomes partly elliptically polarized, and the 
polarization plane turns (Fig. 3c). Numerical analysis 
showed that the intensity of the single scattered 
signal I0 = I′ and almost completely keeps the state 
of polarization (the values of δ, ε, and χ are close to 
zero), and all the changes in the polarization 
structure of the echo signal are due to multiple 
scattering effect. 

To reveal the effect of the extinction matrix on 
the intensity and the polarization characteristics of the 
echo signal, the following model problem was solved. 
The scattering phase matrix R corresponds to 
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αs = 10–2, and the components of the extinction 
matrix χ14 and χ23 are zero. The calculations showed 
that δI(τ) only slightly differ from those shown in 
Fig. 3a, and the polarization characteristics fully 
correspond to those shown in Figs. 3b and c. Then, 
keeping the matrix R the same, we increased the 
components of the extinction matrix χ14 up to 0.2 and 
χ23 up to 0.055. As a result, the polarization structure 
transformed significantly already for the case of 
signal due to the single scattering. The intensity I0 in 

the anisotropic medium and I0
′  in the isotropic one turn 

out significantly different. At the end of the path 

δI(τ) achieves ≈ 50%. The polarization characteristics 
of the single scattering signal do not keep the initial 
state, and the parameters δ, ε, and χ achieve marked 
values (Fig. 4). 

 

 
Fig. 4. Effect of the extinction matrix on the polarization 
characteristics of the single scattering signal: ϕd = ϕsource = 
= 0.8 mrad; dashed line is for the isotropic medium.  
 

The angle of rotation of the polarization plane and 
ellipticity I0(τ) recorded at ϕd = 0.8 mrad are almost 
twice as large as those for the total signal I(τ) for 
large viewing angles (ϕd = 6 mrad), but at the smaller 

values of χ14 and χ23 in the matrix A
)

 (see Figs. 3b 
and c). These features suggest that even weak medium 
anisotropy leads to a marked transformation of the 
radiation polarization structure, while the signal 
intensity, as in the isotropic medium, can be 
determined by the scalar approximation. Quite 
similar conclusion can also be drawn from analysis of 
Eqs. (18). It follows from these equations that the 
intensity of the single scattering echo signal (with 
regard for the fact that the components R12, R13, R14 

are zero in the direction θ = π) I0 = I0
′  coshν14. At the 

low values of the anisotropy factor, when χ14 < 10–2, 
coshν14 ≈ 1 up to large optical depths τ. 

 

Conclusion 
 

In this paper we have proposed, for the first time, 
an approach for constructing the algorithms for 

numerical solution of the nonstationary radiative 
transfer problem in the fully matrix form for the 
geometry of spatially limited beams. The results 
obtained show a marked manifestation of the effects 
of optical anisotropy of scattering particles on the 
polarization characteristics of lidar returns. If the 
abnormal increase of the anisotropy factor for aerosol 
particles in the atmospheric surface layer is possible, 
then peculiarities in the transformation of the 
polarization characteristics of the optical signals may 
be used as an extra earthquake predictor at remote 
polarimetric monitoring of seismic regions. 

However, it should be noted that these numerical 
results are only tentative. In-depth investigations 

should be based on a more detailed study of the 
behavior of the optical characteristics of the medium 
on both the anisotropy factor and the microphysical 
properties of the medium. 
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