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The possible effect of collapse of spontaneous and stimulated emission in an ensemble of 
interacting molecules is predicted. It is supposed that this emission is caused by transitions between 
rotational levels of molecules. A molecule is modeled by a rotor nonlinearly interacting with the 
environment, and the dynamics of its state is theoretically investigated. For this purpose the non-
linear Schrödinger equation is solved. We have obtained that under certain conditions rotor's states 
must change in a jump. Also, at a temperature below some limit, the Bose condensation of rotor's 
states can take place, so spontaneous and stimulated emission attributed to rotation of molecules can 
disappear in molecules at the temperature below the critical value. 

 

A quantum rotor is a well-known object. In 
particular, model representation of diatomic 
molecules as a rigid rotor is widely used for analysis 
of their rotational states. However, despite that the 
behavior of an isolated rotor has been studied quite 
thoroughly, some features inherent in an ensemble of 
rotors are not understood, for example, collapse of 
their rotation at a temperature below some threshold. 
This effect was observed experimentally in molecular 
gases. As the gas temperature drops below some 
limit, its thermal capacity no longer depends on the 
rotational degrees of freedom of the molecules. This 
behavior of thermal capacity is believed 

1 to be caused 
by the insufficient molecular translational energy for 
efficient excitation of the rotational states. This 
explanation has a purely qualitative character and, 
seemingly, is not comprehensive. In particular, it 
fails to explain the stepwise change of the thermal 
capacity. This stepwise change is indicative of some 
collective phenomena in the ensemble of molecules, 
because some Bose condensation of the rotor's states 
is observed. This condensation must affect the optical 
properties of the ensemble of molecules. 

In this paper, we consider one of the possible 
mechanisms of this condensation and its effect on the 
emission of molecules at low temperatures. 

The theoretical model of Bose condensation is 
constructed for an ensemble of rotors based on the 
method developed in Ref. 2. 

The initial assumption in this method is that no 
isolated quantum systems exist in nature. Any 
quantum system interacts with its environment. 
Therefore, if we separate some quantum subsystem as 
some isolated formation, then its states should be 
described by a nonlinear equation, because any 
change in this subsystem automatically affects the 
quantum states of neighboring particles, which, in 
their turn, affect the subsystem. 

In Ref. 3 it has been shown that the following 
equation  

 ( ) ˆ ˆ ,A BΦ ψ = λ ψ ψ  (1) 

is a rather versatile operator accounting for the self-
effect of a separated quantum subsystem through its 
environment. In Eq. (1) λ is the parameter describing 

the feedback strength; Â  and B̂  are the operators, 
whose explicit form is determined by the model 
describing the interaction of the subsystem with the 
environment; ψ is the wave function of the 
subsystem.  

When considering the interaction of the 
separated subsystem (molecule) with the 
environment, we should necessarily keep in mind that 
any quantum fluctuations of the environment cause a 
response from the subsystem. The environment is 
formed by other molecules. Any change in the states 
of these molecules is connected with some change of 
electric fields in them. At quantum transitions, these 
changes occur in a jump, and because the Coulomb 
interaction is a long-range one, the external 
perturbations of an isolated subsystem must 
predominantly be stochastic. From here on, assuming 
the ensemble of rotors to be rather rare, strong 
collisions, which, by the way, can be described by a 
time-regular (in the mathematical sense) operator, are 
believed improbable. 

The behavior of systems experiencing stochastic 
perturbation is usually analyzed 

4 using the formalism 
of density matrix. A peculiarity of this approach is in 
simultaneous consideration of the dynamics of 
solutions of n2 equations, where n is the number of 
states of the quantum subsystem that are taken into 
account. Since in the case of a nonlinear system all 
states are interrelated and the transition between 
states can be stepwise, the use of this approach in 
theoretical consideration of even few states is 
difficult. Therefore, in analysis of the states of 
interacting rotors, we use the formalism of effective 
wave functions, 

5 which allows us to decrease the 



176   Atmos. Oceanic Opt.  /February—March  2004/  Vol. 17,  Nos. 2–3 V.N. Ivanov and I.V. Ivanov 
 

number of equations to be analyzed. These effective 
wave functions are constructed so that the mean 
values of physical quantities calculated with them are 
close to those calculated using the density matrix. 
They satisfy the nonlinear Schrödinger equation: 

 ( )ˆ ˆ ,
2

1

1 1

i
i T U T

t i

∂ψ α= +χ ψ + ψ + ψ + χ ψ ψ
∂ + α + α

h   (2) 

where 

 /2.kTχ =  (3) 

In Eqs. (2) and (3) T̂  is the ordinary operator of 
kinetic energy; U is the operator of potential 
energy; k is the Boltzmann constant; T is the 
ambient temperature; α is the positive parameter, 
whose value is related to the thermostat density.  

Equation (2) has been derived by the method of 
Feynman path integrals. This method rather 
naturally accounts for the stochastic perturbation. To 
do this, all stochastic perturbations are formally 
included in the list of causes affecting the realization 
of possible paths between the initial and final states 
of a quantum system. Then, in constructing the 
integral equation for the propagator (this equation is 
equivalent to the Schrödinger equation), in place of 
summing the contributions of all possible trajectories 
to the probability amplitude, we can simply average 
this propagator over the probabilities of realization of 
possible trajectories. Note that, for the time intervals 
sufficient for considering the statistical properties of 
the quantum subsystem's environment, the effect 
from the stochastic operator in the Feynman 
propagator tends to zero. Nevertheless, this stochastic 
perturbation is taken into account integrally in the 
averaged propagator with the aid of the parameters α 
and χ (in derivation of Eq. (2), these parameters 
were assumed varying adiabatically). The last term in 
Eq. (2) is a particular form of the functional Φ(ψ). 
 The explicit form of the functional Φ(ψ) is 
determined from the following reasoning.5 First, the 

operators Â  and B̂  are believed not to disturb the 
group properties of the Feynman propagator. Second, 
it is assumed that, despite the rotors undergo impact 
perturbation, their decay is improbable, that is, the 
effective wave functions keep time normalization. 
Then, accurate to the terms vanishing at the unitary 
transformation, the following equation results 

 ( ) ˆ ,
2

1

i
T

αΦ ψ = ψ + χ ψ
+ α

 (4) 

i.e., just that used in Eq. (2). 
The wave functions satisfying Eq. (2) can be 

presented as  

 1/2
/ ,ψ = ψ ψ ψ% % %  (5) 

where ψ%  is the solution of the following equation 

 ( )ˆ .
1

1
i T U

t i

∂ψ = +χ ψ + ψ
∂ + α

h   (6) 

Similarly to Eq. (2), Eq. (6) was derived by the 
method of path integrals, but neglecting the 
feedback. The Neumann equation  

 ˆ ˆ[ , ] { , }0 2i H i T i
t

∂ρ = ρ − α ρ − αχρ
∂

h   (7) 

for the statistical operator  

 ρ = ψ ψ% % ,  (8) 

derived from Eq. (6) coincides, accurate to 
designations, with that from Ref. 6 derived by the 
Lax method7 (in this method the feedback is 
neglected) upon reduction of the density matrix of 
the large system to the statistical operator of the 
separated subsystem. In Eq. (7) the square brackets 
denote the commutator, and the braces denote the 

anticommutator. The operator 
^
0H  is the Hamiltonian 

of the isolated quantum subsystem. 
Equation (5) shows one of the ways to find the 

solution of the Schrödinger equation (2). However, 
because of the nonlinearity, this equation permits 
other solutions as well. Considering them, we make 
use of the well-known postulate following from the 
experimental data: the principle of superposition is 
valid for the wave functions describing the state of 
some steady-state quantum subsystem.  

With this postulate in mind and taking Eq. (5) 
into account, we can write any solution of Eq. (2) in 
the form 

 ( ) ( ) ( ),
n n

n

t C tψ = ψ∑r r .  (9) 

Here ( )n
ψ r  are the eigenfunctions of the stationary 

Schrödinger equation  

 ˆ ,
1

1
n n n n

T U E
i

ψ + ψ = ψ
+ α

  (10) 

where 

 
1

1
n n

E E
i

= − χ
+ α

% .  (11) 

In Eq. (11) 
n

E%  is the separation constant 
arising in passing from Eq. (6) to the stationary 
Schrödinger equation. 

As known,8 the operator of potential energy of a 
rigid rotor can be set equal to zero. Therefore, the 
eigenfunctions of Eq. (10) in the case at hand 
coincide with the eigenfunctions of the equation  

 ˆ ,lm l lmT Eψ = ψ   (12) 

whose solution is well-known: 

 

( )

( )( )
( ) ( ) ( )

ψ = ϑ ϕ =

+ −
= ϑ ϕ

π +

,

2 1 !
cos exp .

4 !

m
lm l

m

m l

Y

l l m
a P im

l m

  
(13)

  

In Eq. (13) 
m

a  is the constant: 
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( )
( )

≥= − <

1, 0

1, 0 ;
m

m

a

m

   (14) 

l = 0, 1, 2, 3, … is the orbital quantum number; 
0, 1, 2, ,m l= ± ± ±K  is the magnetic quantum number; 

ϑ and ϕ are spherical angles; ( )m
lP x  is the  

associated Legendre polynomial. 
The variables separation constant in Eq. (10) 

 ( )2 1 /(2 )lE l l J= +h   (15) 

is the intrinsic energy of the rotor, where J  is the 
moment of inertia of the rotor. 

Taking Eqs. (12)–(15) into account, we can 
refine the Eq. (9) to a more specific form: 

 ( ) .

l

lm lm

l m l

C t

=−

ψ = ψ∑∑   (16)  

In Eq. (16) the coefficients ( )lmC t  are, 

generally, irregular functions of time, and under 
certain conditions they can change in a jump. 

Consider this in a more detail. 
As the Schrödinger equation used here is 

nonlinear, not all its solutions are equiprobable.2 
Since we are mainly interested in population of 
energy levels, introduce the occupation numbers 

( ) 2lm lmP C t= . Using Eq. (2), we can readily show 

that these occupation numbers satisfy the system of 
equations: 

( ) ( ) ( )
1 1

1 1 1

1 1 1

2

2

1

m l

lm
l l l m lm

l m l

P
E E P P

t

=

=−

 ∂ α
 = − + χ + + χ

∂ + α   
∑ ∑

h

 

 (l = 0, 1, 2, 3, …; 0, 1, 2, ,m l= ± ± ±K ).   (17) 

The most probable states of the rotor can be 
found, if we put the derivatives in the left-hand side 
of Eq. (17) to zero. However, we cannot find all 

possible values of ( ) 2lm lmP C t=  from the system of 

equations  

 ( ) ( )
1 1

1 1 1

1 1 1

0

m l

l l l m lm

l m l

E E P P

=

=−

 
 − + χ + + χ =
  

∑ ∑    

 ( )0, 1, 2, 3, ; 0, 1, 2, 3, ,l m l= = ± ± ± ±K K . (18) 

Nevertheless, if we sum the right-hand and left-hand 
sides of Eqs. (17) over the magnetic quantum 
number, then such analysis can be performed at least 

for populations of the energy levels 
l

l lm

m l

P P

=−

= ∑ . 

From the system of differential equations 

 ( ) ( ) ( )
1 1

1

2

2

1

l
l l l l

l

P
E E P P

t

 ∂ α
 = − + χ + + χ

∂ + α   
∑

h

  (19)  

it follows that for the most probable lP  values the 

system of nonlinear algebraic equations 

 ( ) ( )
1 1

1

0l l l l

l

E E P P

 
 − + χ + + χ =
  

∑   (20) 

is valid.  
This system has a countable set of solutions: Pl 

can take the values of only unity and zero, and only 
one occupation number can be equal to unity. This 
means that the states with the fixed energy 
corresponding to the eigenvalues of the Hamiltonian 
are most probable for a rotor in the thermostat.  

Since the initial equation is nonlinear, all the 
rotor's states are interrelated. Therefore, when 
analyzing the dynamics of an occupied level, it is 
necessary to monitor simultaneously all the 
unoccupied levels. To do this, note that near the 
equilibrium position for the unoccupied quantum 
states of the rotor in the one-dimensional 
approximation the constant Clm(t) satisfies the 
equation  

 
( )

( )

( )
( )

 +∂ + α= − + χ +  ∂ + α  

 +α+ + χ  + α  

h

h

h

h

2

2

2
2

2

1

21

1
.

21

lm
lm

lm lm

l lC i
C

t J

l l
C C

J

  

(21)

 

This equation coincides in the form with the 
known equation describing the single-parameter 
family of vector fields on the plane: 

 ( )d

d

z
z i kzz

t
= ω + ε + ,  (22) 

the peculiarities of whose solution are well 
studied.9,10 In Eq. (22), z is the complex coordinate; 
ω and k are the real non-zero constants; ε is the real 
parameter. In the considered case 

 
( )

( )

( )
( )

2

2

2

2

11
; ;

21

1
.

21

lm

l l
z C

J

l l
k

J

 +
= ω = − +χ  + α  

 +αε = − = − + χ  + α  

h

h

h

h

  

(23)

 

At all ε values the point z = 0 in Eq. (23) is the 
equilibrium position of the focal type. And at ε < 0 
(which is true for the situation at hand) this focus is 
stable. Consequently, if the parameter α is 
significantly different from zero, then in the absence 
of strong, regular in time, perturbations the 
determined "zero" equilibrium states are stable and 
the rotor cannot transit into them from the 
"occupied" state. In other words, the rotor, because 
of the stochastic character of perturbation, must be 
in one of the unoccupied states with certain values of 
the orbital and magnetic quantum numbers. 

In the case that the parameter α is close to zero, 
the unoccupied states lose stability (as known, at 
k > 0 and ε tending to zero, the focuses z = 0 in 
Eq. (22) become unstable) and the state of the rotor 
can vary even under a weak perturbation. This 
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circumstance allows us to study the regularities of 
transition from one equilibrium state into another. 
 Equation (22) has a fold singularity; therefore, 
as ε approaches zero from the negative side at some 
low, but nonzero value | ε | = δ,  the available 
peculiarities can disturb the system from the nearly 
equilibrium state.9–11 In such a case, the system 
transits into either other far equilibrium position or 
some limit cycle, or other more complex attractor. A 
"catastrophe" occurs. This means that at the 
parameter α  less than some critical value (at which 
the Schrödinger equation still remains nonlinear) 
quantum states can change in a jump. Consider 
variation of the population of energy levels in this 
case using the two-level approximation. 

Supposing that the transition involves only two 
quantum states, write the system of equations 
determining the state of the rotor: 

1 1 1 1

2

2

2

1 1

2 ( 1)
( 1)

2 2(1 )

( 1)
( , ),

2 2

lm
lm

l m lm lm l m

P l l kT
P

t J

l l kT
P P F P P

J

 ∂ α += + − + 
∂ + α  

 ++ + = 
  

h

h

h

 

( )
( ) ( )1 1

1 1

2

1 1

2

12
1

2 21

l m

l m

P l l kT
P

t J

 ∂ +α= + − +  ∂ + α  

h

h

 

 
( )

1 1 1 1

2 1
( , ).

2 2
lm l m lm l m

l l kT
P P P P

J

 +
+ + = Φ     

h
  (24) 

Assume that the rotor is in the equilibrium state 
corresponding to the energy level El. This means that 
the following is valid: 

 
1

1

1

1, ;

0, .
l

l l
P

l l

=
=  ≠

  (25) 

For the reasons mentioned above, we can expect 
that only one Plm is nonzero.  

Consider first the case of coinciding l and l1, 
and l ≠ 0. 

Since the equality 

 
1

1lm lmP P+ =   (26) 

is valid in the considered approximation, it follows 
from Eq. (24)  

 
1

0,

0.

lm

lm

P

t

P

t

∂ =
∂

∂
=

∂

   (27) 

Taking into account the properties of the 
solution of Eq. (22), we can conclude that, at 
stochastic perturbation of the rotor, quantum 
transitions are possible only between the states 
having different energy.  

In the case that l ≠ l1, the population of the 
quantum states, as in the previous case, is determined 
by the system of equations (24). The parameters 

giving the information about the character of 
stationary states of the rotor and their dynamics are 
the Jacobian of the system of equations (24) 

 1 1 1 11 1

1 1 1 11 1

( , ) ( , )

( , ) ( , )

lm l m

lm l m

P Plm l m lm l m

P Plm l m lm l m

F P P F P P

P P P P

′ ′
∆ =

′ ′Φ Φ
  (28) 

and the sum of diagonal elements of this Jacobian  

 
1 1 1 11 1

( , ) ( , ),
lm l mP Plm l m lm l mF P P P P′ ′σ = + Φ  (29) 

calculated at the equilibrium point (assuming that 

1 1
1; 0lm l mP P= = ) [Ref. 12]. 

The values of these constants near the 
equilibrium points depend on the orbital quantum 
number, moment of inertia, temperature, and the 
parameter α: 

 
( )2 2

1 12

11
( 1) ( 1) ;

(1 )

l l
kT l l l l

J J

 +α ∆ = + + − +     + α    

h
  

  (30) 

 ( ) ( ) ( )
2

1 1
2

2 1 1
1

l l l l kT
J

 α  
 σ = + − + +  + α   

h

h

.  (31) 

Since ∆ ≠ 0, the equilibrium points are tough: 
there are no other equilibrium points near them. 
Therefore, if the rotor leaves the equilibrium 
position, then, unless some stable cycle arises, it 
either transits into other equilibrium state or returns 
into the initial one. 

Consider possible versions of the rotor's 
behavior in a more detail. 

Let l > l1. In this case ∆ > 0. There is a knot.12 
Since σ > 0, this equilibrium point is unstable. 
Therefore, in the presence of prerequisites for a 
"catastrophe," the rotor can leave this state in a 
jump. There are no stable cycles here. Actually, if, 
after leaving the equilibrium state, the rotor finds 
itself in the state described by a superposition of 
wavefunctions of the upper and lower states, then 
finally it transits to the lower energy level. 
According to Eq. (5), this superposition has the form 
 

 + α + ψ = − ψ + ×  + α 

 + α + α +   × − ψ − +    + α + α    

α + + −  + α 

h

h h

h

1

1

1

2

21 1

2 2

1

22 1 1

2

( ) ( 1)
exp

2 (1 )

( ) ( 1) ( 1)
exp exp

2 (1 ) (1 )

( 1)
exp ,

(1 )

l l k

l l

l

i l l
C t C

J

i l l l l
t C t

J J

l l
C t

J
 

Consider one version more: l < l1. 
The equilibrium point in this case is a saddle 

and also unstable. This means that the population of 
the rotor's lower level, as in the case with l > l1, can 
change in a jump. However, there is an important 
difference here. Such changes are not always possible.  
 Actually, if the rotor is disturbed from the 
equilibrium position so that its new state is described 
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by the superposition (32), then with time the rotor 
returns into the initial state. Generally, the rotor's 
trajectory from the equilibrium position is a loop 
tangent to the saddle separatrix.12 The stability of 
this loop depends on the sign of σ [Ref. 12]. If this 
parameter is negative at the equilibrium point, then 
the loop is stable; otherwise it is unstable. 
Consequently, the jump like change of the rotor's 
equilibrium position is possible only if σ > 0. 
Otherwise, once the rotor leaves the equilibrium 
position, even with some prerequisites for the 
quantum jump, it returns into the initial state. This 
means that the upper state finally turns out 
unpopulated. From Eq. (31) it follows that the rotor 
cannot change the equilibrium position in a jump at  
 

 ( ) ( )
2

1 1 1 2 1T l l l l
kJ

 < + − + 
h

.  (33)  

That is, at the temperature below the limit 
determined by Eq. (33), the rotor, falling into the 
lower equilibrium position, cannot transit to the 
upper level without a strong external action. 
Consequently, if we consider an ensemble of rotors, 
then at the temperature below the critical one  

 2
2T kJ< h ,  (34) 

because of the density fluctuations of the thermostat, 
only the lower energy state of the rotors is occupied. 
Thus, the Bose condensation of the rotor's states 
takes place. Seemingly, it is just this effect that 
manifests itself in the thermal capacity of gases. An 
important property of such states is that both  
 

spontaneous and stimulated emission must be absent 
in the ensemble of rotors. At a temperature  below 
the limit determined by Eq. (34), any emission 
caused by rotation disappears: molecules become 
invisible. 
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